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Abstract

Semantic segmentation is pixel-wise classification which re-
tains critical spatial information. The “feature map reuse” has
been commonly adopted in CNN based approaches to take
advantage of feature maps in the early layers for the later spa-
tial reconstruction. Along this direction, we go a step further
by proposing a fully dense neural network with an encoder-
decoder structure that we abbreviate as FDNet. For each stage
in the decoder module, feature maps of all the previous blocks
are adaptively aggregated to feedforward as input. On the one
hand, it reconstructs the spatial boundaries accurately. On the
other hand, it learns more efficiently with the more efficient
gradient backpropagation. In addition, we propose boundary-
aware loss function to focus more attention on the pixels near
the boundary, which boosts the “hard examples” labeling. We
have demonstrated the best performance of the FDNet on
the two benchmark datasets: PASCAL VOC 2012, NYUDv2
over previous works when not considering training on other
datasets.

Introduction
Recent works on semantic segmentation are mostly based
on fully convolutional network (FCN) (Long, Shelhamer,
and Darrell 2015). Generally, a pretrained classification net-
work (VGGNet (Simonyan and Zisserman 2015), ResNet
(He et al. 2016) and DenseNet (Huang et al. 2017)) is used
as an encoder to generate a series of feature maps with
rich semantic information at the higher layers. In order
to obtain the probability map with the same resolution as
the input image size, the decoder is adopted to recover
the spatial resolution from the output of the encoder (Fig.
1 Top). The encoder-decoder structure is widely used for
semantic segmentation (Vijay, Alex, and Roberto 2017;
Long, Shelhamer, and Darrell 2015; Noh, Hong, and Han
2015; Zhao et al. 2017) .

The key difficulties for the encoder-decoder structure
are twofold. First, as multiple stages of spatial pooling and
convolutional strides are used to reduce the final feature
map size in the encoder module, much spatial information
is lost. This is hard to recover in the decoder module and
leads to poor semantic segmentation results, especially
for boundary localization. Second, the encoder-decoder
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Figure 1: Different types of encoder-decoder structures for
semantic segmentation. Top: basic encoder-decoder struc-
ture (e.g. DeconvNet (Noh, Hong, and Han 2015) and Seg-
Net (Vijay, Alex, and Roberto 2017)) using multiple-stage
decoder to predict masks, often results in very coarse pixel
masks since spatial information is largely lost in the encoder
module. Middle: Feature map reuse structures using previ-
ous feature maps of the encoder module achieves very good
results in semantic segmentation tasks (Lin et al. 2017a;
Islam et al. 2017; Ghiasi and Fowlkes 2016) and other re-
lated tasks (Pinheiro et al. 2016; Shen et al. 2017; Huang et
al. 2018), but the potential of feature map reuse is not deeply
released. Bottom: The proposed fully dense networks, us-
ing feature maps from all the previous blocks, are capable of
capturing multi-scale information, of restoring the spatial in-
formation, and of benefitting the gradient backpropagation.

structure has much deeper depth than the original encoder
network for image classification tasks (such as VGGNet
(Simonyan and Zisserman 2015), ResNet (He et al. 2016)
and DenseNet (Huang et al. 2017)). This results in the train-
ing optimization problem as introduced in (He et al. 2016;
Huang et al. 2017) though it has been partially solved by
using batch normalization (BN) (Ioffe and Szegedy 2015).

In order to address the spatial information loss problem,
DeconvNet (Noh, Hong, and Han 2015) uses the unpooling
layers to restore the spatial information by recording the
locations of maximum activations during the pooling oper-
ation. However, this cannot completely solve the problem
since only the location of maximum activations is restored.
Another way to deal with this problem is to reuse the feature
maps with rich spatial information of earlier layers. U-Net
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Figure 2: Left: (a) original images; (b) trimap example with
1 pixels; (c) trimap example with 10 pixels. Right: semantic
segmentation result within a band around the object bound-
aries for different methods (mean IOU).

(Ronneberger, Fischer, and Brox 2015) exploits previous
feature maps in the decoder module by “skip connections”
structure (See Fig. 1 Middle). Furthermore, RefineNet (Lin
et al. 2017a) refines semantic feature maps from later layers
with fine-grained feature maps from earlier layers. Simi-
larly, G-FRNet (Islam et al. 2017) adopts multi-stage gate
units to make use of previous feature maps progressively.
The feature map reuse significantly improves the restoration
of spatial information. Meanwhile, it helps to capture
multi-scale information from the multi-scale feature maps
of earlier layers in the encoder module. In addition, it also
boosts information flow and gradient backpropagation as
the path from the earlier layers to the loss layer is shortened.

However, the potential of feature map reuse is not
completely revealed. In order to further improve the perfor-
mance, we propose to reconstruct encoder-decoder neural
network to form a fully dense neural network (See Fig. 1
Bottom). We refer to our neural network as FDNet. FDNet
is a nearly symmetric encoder-decoder network and is easy
to optimize. We choose DenseNet-264 (Huang et al. 2017)
as the encoder, which achieves state-of-the-art results in the
image classification tasks. The feature maps in the encoder
module are beneficial to the decoder module. The decoder
module is operated as an upsampling process to recover
the spatial resolution, aiming for accurate boundary local-
ization. The feature maps of different scale size (including
feature maps in the decoder module) will be fully reused
through adaptive aggregation structure, which will generate
a fully dense connected structure.

In general, cross entropy loss function is used to propa-
gate the loss in previous works (Liu, Rabinovich, and Berg
2016; Lin et al. 2017a). The weakness of this method is that
it sees all pixels as the same. As shown in Fig. 2, labeling
for the pixels near the boundary (band width < 40) is not
very accurate. In other words, the pixels near the boundary
are “hard examples”, which need to be treated differently.
Based on this observation, we propose a boundary-aware
loss function, which pays more attention on the pixels
near the boundary. Though attention based loss has been
adopted in object detection task (Lin et al. 2017c), our
boundary-aware loss comes from the prior that pixels near
the boundary are “hard examples”. This is very different
from focal loss, which pays more attention to the pixels with
higher loss. In order to further boost training optimization,
we use multiple losses for the output feature maps of the

decoder module. As a result, basically each layer of FDNet
has direct access to the gradients from loss layers. This will
be very helpful to gradient propagation (Huang et al. 2017).

Related work
Fully convolutional network (FCN) (Long, Shelhamer, and
Darrell 2015) has improved the performance of semantic
segmentation significantly. In the FCN architecture, a fully
convolutional structure and bilinear interpolation are used to
realize pixel-wise prediction, which results in coarse bound-
aries as large amounts of spatial information have been lost.
Following the FCN method, many works (Vijay, Alex, and
Roberto 2017; Lin et al. 2017a; Zhao et al. 2017) have tried
to further improve the performance of semantic segmenta-
tion.
Encoder-decoder. The encoder-decoder structure with a
multi-stage decoder gradually recovers sharp object bound-
aries. DeconvNet (Noh, Hong, and Han 2015) and SegNet
(Vijay, Alex, and Roberto 2017) employ symmetric encoder-
decoder structures to restore spatial resolution by using un-
pooling layers. RefineNet (Lin et al. 2017a) and G-FRNet
(Islam et al. 2017) also adopt a multi-stage decoder with fea-
ture map reuse in each stage of the decoder module. In LRR
(Ghiasi and Fowlkes 2016), a multiplicative gating method
is used to refine the feature map of each stage and a Lapla-
cian reconstruction pyramid is used to fuse predictions.
Moreover, (Fu et al. 2017) stacks many encoder-decoder
architectures to capture multi-scale information. Following
these works, we also use an encoder-decoder structure to
generate pixel-wise prediction label maps.
Feature map reuse. The feature maps in the higher layers
tend to be invariant to translation and illumination. This in-
variance is crucial for specific tasks such as image classi-
fication, but is not ideal for semantic segmentation which
requires precise spatial information, since important spatial
relationships have been lost. Thus, the reuse of feature maps
with rich spatial information of previous layers can boost the
spatial structure reconstruction process. Furthermore, fea-
ture map reuse has also been used in object detection tasks
(Shen et al. 2017; Lin et al. 2017b) and instance segmenta-
tion tasks (Pinheiro et al. 2016; He et al. 2017) to capture
multi-scale information when considering the objects with
different scales. In our architecture, we fully aggregate pre-
vious feature maps in the decoder module, which shows out-
standing performances in the experiments.

Fully dense neural networks
In this section, we introduce the proposed fully dense neural
network (FDNet), which is visualized in Fig. 3 comprehen-
sively. We first introduce the whole architecture. Next, the
adaptive aggregation structure for dense feature maps is pre-
sented in detail. At last, we show the boundary-aware loss
function.

Encoder-decoder architecture
Our model (Fig. 3) is based on the deep encoder-decoder ar-
chitecture (e.g. (Noh, Hong, and Han 2015; Vijay, Alex, and
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Figure 3: Overview of the proposed fully dense neural network (FDNet). The feature maps (output of dense block 1, 2, 3, 4) of
the encoder module and even the feature maps (output of dense block 5) of the decoder module are fully reused. The adaptive
aggregation module combines feature maps from all the previous blocks to form new feature maps as the input of subsequent
blocks. After an adaptive aggregation module or a dense block, a convolution layer is used to compress the feature maps. The
aggregated feature maps are upsampled into size H ×W × C (C is number of classes for labels) and pixel-wise cross entropy
loss is computed.

Roberto 2017)). The encoder module extracts features from
an image and the decoder module produces semantic seg-
mentation prediction.
Encoder. Our encoder network is based on the DenseNet-
264 (Huang et al. 2017) while removing the softmax and
fully connected layers of the original network (from the
starting convolutional layer to dense block 4 in Fig. 3). The
input of each convolutional layer within a dense block is the
concatenation of all outputs of its previous layers at a given
resolution. Given that xl is the output of the `th layer in a
dense block, x` can be computed as follows:

x` = Hl([x0, x1, ..., x`−1]) (1)

where [x0, x1, ..., x`−1] denotes the concatenation opera-
tion of the feature maps x0, x1, ..., x`−1, and x0 is the in-
put feature map of the dense block. Meanwhile, H`(·) is
defined as a composite function of operations: BN, ReLU,
a 1 × 1 convolution operation followed by BN, ReLU, a
3 × 3 convolution operation. As a result, the output of a
dense block includes feature maps from all the layers in this
block. Each dense block is followed by a transition layer,
which is to compress the number and the size of feature
maps through 1 × 1 convolution and pooling layers. For
an input image I , the encoder network produces 4 feature
maps (B1, B2, B3, B4) with decreasing spatial resolution
( 14 ,

1
8 ,

1
16 ,

1
32 ). In order to reduce spatial information loss,

we can remove the pooling layer before dense block 4 so
that the output feature map of the last dense block (i.e. B4)
in the encoder module is 1

16 of the size. Atrous convolution

is also used to control the spatial density of computed fea-
ture responses in the last block as suggested in (Chen et al.
2017). For this architecture, we refer to it as FDNet-16s. The
original architecture can be taken as FDNet-32s.
Decoder. As the encoder-decoder structure has much more
layers than the original encoder network, how to boost gradi-
ent backpropagation and information flow becomes another
problem we have to deal with. The decoder module progres-
sively enlarges the feature maps while densely reusing pre-
vious feature maps by aggregating them into a new feature
map. As the input feature map of each dense block has a di-
rect connection to the output of the block, the inputs of pre-
vious blocks in the encoder module also connect to the new
feature map directly. The new feature map is then upsampled
to compute loss with the groundtruth, which leads to multi-
ple losses computation. Thus, the inputs of all dense blocks
in the FDNet have a direct connection to the loss layers. This
will significantly boost the gradient backpropagation.

Following the DenseNet structure, we also use dense
block at each stage of the same size after a compression
layer with convolution operation, which is to change the
number of feature maps from adaptive aggregation structure.
The compression layer is composed of BN, ReLU and 1× 1
convolution operation. In the two compression layers after
adaptive aggregation, their filter numbers are set to 1024 and
768. In the two compression layers after block 5 and block
6, the filter numbers are set to 768 and 512. For block 5 and
block 6, there are 2 convolutional layers in each of them.
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Figure 4: An example of an adaptive aggregation structure
for dense feature maps. For all the input feature maps (not
including direct connected input feature map, i.e. blue line),
a compression layer with BN, ReLU and 1 × 1 convolution
is applied to adjust the number of feature maps. Then an up-
sampling or downsampling layer is first operated so that all
the feature maps are consistent in size with the output fea-
ture map. They are then concatenated to form a new feature
map with 1

8 of the size of the input image.

Adaptive aggregation of dense feature maps

In previous works, e.g. U-Net (Ronneberger, Fischer, and
Brox 2015) for semantic segmentation, FPN (Lin et al.
2017b) for object detection and SharpMask (Pinheiro et al.
2016) for instance segmentation, feature maps are reused
directly in the corresponding decoder module by concate-
nating the feature maps or adding them. Furthermore, Re-
fineNet (Lin et al. 2017a), LRR (Ghiasi and Fowlkes 2016)
and G-FRNet (Islam et al. 2017) refine the feature maps pro-
gressively stage by stage. Instead of just using previous fea-
ture maps as before, we introduce an adaptive aggregation
structure to make better use of feature maps from previous
blocks. As shown in Fig. 4, the feature maps from previous
blocks are densely concatenated together by using the adap-
tive aggregation structure.

The adaptive aggregation structure takes all the feature
maps from previous blocks (B1, B2, ...) as input. The fea-
ture maps from the lower layers (e.g. B1, B2) are of high
resolution with coarse semantic information, whereas fea-
ture maps from the higher layers (e.g. B3, B4) are of low
resolution with rich semantic information. The adaptive ag-
gregation structure combines all previous feature maps to
generate rich contextual information and also spatial infor-
mation. For incoming feature maps, the scale sizes may be
different. As shown in Fig. 4, the output feature map is 1

8
of the size of the input image. To reduce memory consump-
tion, we firstly use the convolutional layer to compress the
incoming feature maps except for the direct connected fea-
ture map (which has been compressed). The compression
layer is also composed of BN, ReLU and a 1 × 1 convo-
lution operation. In order to make all feature maps consis-
tent in size, we use the convolutional layer to downsample
and the deconvolutional layer to upsample the feature maps.
Intuitively, we directly concatenate the feature map if it is
equivalent to the size of the output feature map. The convo-
lutional layers are all composed of BN, ReLU and a 3 × 3
convolution operation with different strides. The deconvo-
lutional layers are all composed of BN, ReLU and a 4 × 4

deconvolutional operation with different strides. At last, all
the resultant feature maps Di

1, D
i
2, ..., D

i
M (M input feature

maps) are concatenated into a new feature map F i for the ith
stage, which is then fed to latter loss computation operation
or dense block. The formulation for obtaining the ith dense
feature map from the previous feature maps can be written
as follows:

Di
1 = T i1(B1), D

i
2 = T i2(B2), ..., D

i
M = T iM (BM )

F i = [Di
1, D

i
2, ..., D

i
M ] (2)

where T (·) denotes the transformation operation (downsam-
ple or upsample). If Bj is of the same size as the output fea-
ture map, no operation is performaned on Bj . In addition,
[· · · ] stands for the concatenation operation.

In the adaptive aggregation structures for the three stages
of the decoder module, the filter numbers in the compression
layer for the reused feature map are set to 384, 256 and 128
respectively. The upsampling and downsampling layers will
not change the dimension of feature maps.

Boundary-aware loss
In previous works, cross entropy loss function is often used
in pipeline, which treat all pixels equally. As shown in Fig.
2, we can see that the pixels surrounding the boundary are
“hard examples”, which lead to bad prediction. Based on this
observation, we construct a boundary-aware loss function,
which guides the network to pay more attention on the pixels
near the boundary. The loss function is

loss(L,Lgt) = − 1

N

K∑
j=1

∑
Ii∈Sj

C∑
c=1

αjL
gt
i,cw(Li,c)logLi,c

(3)

where L is the result of softmax operation on the output
feature map and Lgt is the groundtruth. The Ii is the i-th
pixel in the image I and C is number of categories. We split
all the N pixels of image I into several sets Sj based on
the distance between the pixels and the boundary so that
I = {S1, S2, ..., SK}. We apply image dilation operation
on the boundary with varying kernel size, which refers to
as band width shown in Fig. 2, to obtain different set of pix-
els surrounding the boundary. αj is the balancing weight and
w(Li,c) is an attention weight function. Motivated by (Lin et
al. 2017c), we test two attention weight functions (poly and
exp): w(Li,c) = (1 − Li,c)

λ and w(Li,c) = e−λ(1−Li,c).
The λ is used to control attention weight. The ablation ex-
periment results are shown in Table 2.

In order to further boost the gradient backpropagation and
information flow, we compute multiple losses for different
aggregated feature map F i motivated by (Zhao et al. 2017;
Islam et al. 2017; Fu et al. 2017). Specifically, F i is fed to
upsample module to obtain a feature map Li with channel
C, where C is number of classes in prediction labels. Then
the feature map Li is upsampled by using bilinear interpo-
lation method directly to produce feature map H ×W ×C,
which is used to compute pixel-wise loss with groundtruth.
In terms of formula, the final loss Lfinal is computed as fol-



Image GroundtruthFDNetw/ Feature reusew/o Feature reuse

Figure 5: The effect of employing the proposed fully dense
feature map reuse structure compared with other frame-
works. Our proposed FDNet shows better results (Column
4), especially on the boundary localization, compared with
the results (Column 3) of encoder-decoder structure with
feature reuse method (Fig. 1 Middle) and the results (Col-
umn 2) of encoder-decoder structure without feature reuse
method (Fig. 1 Top).

lows:

Li = softmax(Ui(F
i))

Lfinal =
∑
i

loss(Li, Lgt) (4)

where Ui(·) denotes a upsample module with bilinear inter-
polation operation.

In the encoder module, the output feature map of each
module is the concatenation of all the feature maps within
this block, including the input. And the aggregated feature
map is feature maps from all the previous blocks. Thus, each
feature map in the encoder has much shorter path to loss
compared with previous encoder-decoder structure (Lin et
al. 2017a; Islam et al. 2017). The gradient backpropagation
and information flowing is much more efficient. This will
further boost our network optimization.

Implementation details
Training: The proposed FDNet is implemented with Py-
Torch on a single NVIDIA GTX 1080Ti. The weights of
DenseNet-264 are directly employed in the encoder module
of FDNet. In the training step, we adopt data augmentation
similar to (Chen et al. 2016a). Random crops of 512 × 512
and horizontal flip is applied. We train the dataset with 30K
iterations. We optimize the network by using the “poly”
learning rate policy where the initial learning rate is multi-
plied by (1− iter

max iter )
power with power = 0.9. The initial

learning rate is set to 0.00025. We set momentum to 0.9 and
weight decay to 0.0005.
Inference: In the inference step, we pad images with mean

Table 1: The mean IoU scores (%) for encoder-decoder with
different feature map reuse methods on PASCAL VOC 2012
validation dataset.

Encoder stride w/o feature
reuse

w/ feature
reuse

dense feature
reuse

32 77.2 78.5 78.9
16 78.2 79.1 79.4

Table 2: The mean IoU scores (%) for boundary-aware loss
on PASCAL VOC 2012 validation dataset. The poly and exp
represent different weighting methods.

loss mIoU
CE 79.4

b-aware(poly) kernel = (10, 20, 30, 40), λ = 0
α = (5, 4, 3, 2, 1) 79.5
α = (8, 6, 4, 2, 1) 80.3

b-aware(poly) α = (8, 6, 4, 2, 1), λ = 0
kernel = (5, 10, 15, 20) 79.6

b-aware(poly) α = (8, 6, 4, 2, 1),
kernel = (10, 20, 30, 40)
λ = 1 80.0
λ = 2 79.6
λ = 5 77.7

b-aware(exp) α = (8, 6, 4, 2, 1),
kernel = (10, 20, 30, 40)
λ = 0.25 80.7
λ = 0.5 80.3
λ = 0.75 80.9
λ = 1 80.6
λ = 2 79.2

value before feeding full images into the network. We apply
multi-scale inference, which is commonly used in seman-
tic segmentation methods (Lin et al. 2017a; Fu et al. 2017).
For multi-scale inference, we average the predictions on the
same image across different scales for the final prediction.
We set the scales ranging from 0.6 to 1.4. Horizontal flipping
is also adopted in the inference. In the ablation experiments,
we just use the single scale (i.e. scale = 1.0) and horizontal
flipping method to do inference. In addition, we use the last-
stage feature map of the decoder module to generate final
prediction label map.

Experiments
In this section, we describe configurations of experimen-
tal datasets and show ablation experiments on PASCAL
VOC 2012. At last, we report the results on two benchmark
datasets: PASCAL VOC 2012 and NYUDv2.

Datasets description
To show the effectiveness of our approach, we conduct com-
prehensive experiments on PASCAL VOC 2012 dataset (Ev-
eringham et al. 2010) and NYUDv2 dataset (Silberman et al.
2012).



Table 3: GPU memory, number of parameters and some re-
sults on VOC 2012 test dataset are reported.

Methods RefineNet-152 FDNet SDNM2

GPU Memory (MB) 4253 2907 -
Parameters (M) 109.2 113.1 161.7
mIOU 83.4 84.2 83.5

Table 4: Comparison of different mothods on PASCAL VOC
2012 validation dataset with mean IoU score (%). FDNet-
16s-MS denotes the evaluation on multiple scales. FDNet-
16s-finetuning-MS denotes fine-tuning on standard training
data (1464 images) of PASCAL VOC 2012 dataset after
training on the trainaug dataset.

Method mIoU
Deeplab-MSc-CRF-LargeFOV 68.7
DeconvNet 67.1
DeepLabv2 77.7
G-FRNet 77.8
DeepLabv3 79.8
SDN 80.7
DeepLabv3+ 81.4
FDNet-16s 80.9
FDNet-16s-MS 82.1
FDNet-16s-finetuning-MS 84.1

PASCAL VOC 2012: The dataset has 1,464 images for
training, 1,449 images for validation and 1,456 images for
testing, which involves 20 foreground object classes and one
background class. Meanwhile, we augment the training set
with extra labeled PASCAL VOC images provided by Se-
mantic Boundaries Dataset (Hariharan et al. 2011), resulting
in 10,582 images as trainaug dataset for training.

NYUDv2: The NYUDv2 dataset (Silberman et al. 2012)
consists of 1449 RGB-D images showing indoor scenes.
We use the segmentation labels provided in (Gupta, Arbe-
laez, and Malik 2013), in which all labels are mapped to 40
classes. We use the standard training/test split with 795 and
654 images, respectively. Only RGB images are used in our
experiments.

Moreover, we perform a series of ablation evaluations on
PASCAL VOC 2012 dataset with mean IoU score reported.
We use the trainaug and validation dataset of PASCAL VOC
2012 for training and inference, respectively.

Feature map reuse
To verify the power of dense feature maps reuse, we com-
pare our method with other two baseline frameworks. In
this experiment, cross entropy loss is used. One is encoder-
decoder structure without feature map reuse (Fig. 1 Top)
and the other is encoder-decoder structure with naive fea-
ture map reuse (Fig. 1 Middle). We also compare the three
frameworks on different encoder strides (the ratio of input
image resolution to smallest output feature map of encoder,
i.e. 16 and 32).

The results are shown in Table 1. It is observed that

Figure 6: Some visual results on PASACAL VOC 2012
dataset. Three columns of each group are image, groundtruth
and prediction label map.

the performance increases when feature maps are reused.
Specifically, the performance for encoder-decoder (encoder
stride = 32) without feature map reuse is only 77.2%. Af-
ter the naive feature map reuse, the performance can in-
crease to 78.5%. Furthermore, our fully dense feature map
reuse can further improve the performance to 78.9%. In ad-
dition, when we adopt the stride 16 for the encoder mod-
ule, the performance is much better than the original en-
coder with stride 32 on the three frameworks. This is be-
cause the spatial information loss is reduced by the en-
coder with smaller stride. We speculate that encoder with
stride 8 can have better result similar to (Chen et al. 2017;
2018). Because of memory limitation, we only test on the
encoder with stride 16 and 32.

We also show some predicted semantic label maps for dif-
ferent feature map reuse methods in Fig. 5. For the encoder-
decoder structure without feature map reuse, the result is
poor, especially for boundary localization. Though the naive
feature map reuse method improves the segmentation result
partially, it is still hard to obtain accurate pixel-wise predic-
tion. The fully dense feature map reuse method shows very
excellent results on the boundary localization.

Boundary-aware loss
In order to demonstrate the effect of proposed boundary-
aware loss method, we take FDNet-16s as baseline to test
the performance of different parameters. We mainly use the
kernel = (10, 20, 30, 40) and kernel = (5, 10, 15, 20) by
splitting the pixels into K = 5 sets (the remaining pixels are
referred to as S5). For poly weight method, the boundary-
aware loss method (b-aware) degrades into cross entropy
method (CE) when α = (1, 1, 1, 1, 1) and λ = 0. As shown
in Table 2, the simply weighting on the pixels surrounding
the boundary shows better performance compared with gen-
eral cross entropy method, which enhances the performance
by 0.9%. By fixing theα and kernel, we try different param-
eter λ in Table 2. Comparing the poly and exp methods, we
can observe that exp brings obvious improvement by 1.5%.
On the contrary, the poly methods lead to worse effect com-
pared with baseline method (80.0 vs 80.3). In addition, the
network cannot converge for λ < 1. We also compare the la-
beling accuracy for the pixels near the boundary. As shown
in Fig. 2, the FDNet with boundary-aware loss shows obvi-
ous better performance for the pixels surrounding the bound-
ary.



Table 5: Quantitative results (%) in terms of mean IoU on PASCAL VOC 2012 test set. Only VOC data is used as training data
and denseCRF (Krähenbühl and Koltun 2011) is not included.
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Attention (Chen et al. 2016b) 86.0 38.8 78.2 63.1 70.2 89.6 84.1 82.9 29.4 75.2 58.7 79.3 78.4 83.9 80.3 53.5 82.6 51.5 79.2 64.2 71.5
Deeplabv2 (Chen et al. 2016a) 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6
GCRF (Vemulapalli et al. 2016) 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2
Adelaide (Lin et al. 2016) 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3
LRR (Ghiasi and Fowlkes 2016) 91.8 41.0 83.0 62.3 74.3 93.0 86.8 88.7 36.6 81.8 63.4 84.7 85.9 85.1 83.1 62.0 84.6 55.6 84.9 70.0 75.9
G-FRNet (Islam et al. 2017) 91.4 44.6 91.4 69.2 78.2 95.4 88.9 93.3 37.0 89.7 61.4 90.0 91.4 87.9 87.2 63.8 89.4 59.9 87.0 74.1 79.3
PSPNet (Zhao et al. 2017) 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6
SDN (Fu et al. 2017) 96.2 73.9 94.0 74.1 76.1 96.7 89.9 96.2 44.1 92.6 72.3 91.2 94.1 89.2 89.7 71.2 93.0 59.0 88.4 76.5 83.5
FDNet 95.5 79.9 88.6 76.1 79.5 96.7 91.4 95.6 40.1 93.0 71.5 93.4 95.7 91.1 89.2 69.4 93.3 68.0 88.3 76.8 84.2

Memory analysis
For semantic segmentation task, memory consumption and
parameter number are both important issues. The proposed
FDNet uses fully dense connected structure with nearly the
same number of parameters compared with RefineNet (Lin
et al. 2017a). As shown in Table 3, the FDNet consumes
much less GPU memory (training process) compared with
RefineNet. In addition, the memory consumption of FDNet
can be reduced by using sharing memory efficiently based
on (Geoff Pleiss* 2017). Compared with SDN (Fu et al.
2017), there are much less parameters for FDNet but the per-
formance is much better.

PASCAL VOC 2012
We evaluate the performance on PASCAL VOC 2012
dataset following previous works (Lin et al. 2017a; Zhao et
al. 2017). As FDNet-16s shows better performance (Table
1), we only report the performance of FDNet-16s in follow-
ing experiments. We adopt boundary-aware method in the
training step. As shown in Table 4, FDNet-16s achieves very
comparable result with 82.1% mean IoU accuracy compared
with previous works ((Chen et al. 2017; Islam et al. 2017;
Fu et al. 2017)) when evaluated on multiple scales. More-
over, after fine-tuning the model on the standard training
data (1464 images) of PASCAL VOC 2012 dataset, we
achieve much better result with 84.1% mean IoU accuracy,
which is the best result currently if not considering pretrain-
ing on other dataset (such as MS-COCO (Lin et al. 2014)).
Some visual results with image, groundtruth and prediction
label map are shown in Fig. 6.

Table 5 shows quantitative results of our method on the
test dataset, where we only report the results using PAS-
CAL VOC dataset. We achieve the best result with 84.2% on
test data without pretraining on other datasets, which is the
highest score when considering training on PASCAL VOC
2012 dataset. Though latest work DeepLabv3+ (Chen et al.
2018) achieve mean IoU score of 89.0% on test data of PAS-
CAL VOC 2012, the result is relying on pretraining on much
larger dataset MS-COCO (Lin et al. 2014) or JFT (Chol-
let 2017). In fact, FDNet-16s shows very comparable result
compared with DeepLabv3+ on validation dataset (Table 4).

NYUDv2 Dataset
We conduct experiments on NYUDv2 dataset to compare
FDNet-16s with previous works. We follow the training

Table 6: Quantitative results (%) on NYUDv2 dataset (40
classes). The model is only trained on the provided training
image dataset.

Method pixel acc. mean acc. mIoU
FCN-32s 60.0 42.2 29.2
SegNet 66.1 36.0 23.6
Bayesian SegNet 68.0 45.8 32.4
FCN-HHA 65.4 46.1 34.0
Piecewise 70.0 53.6 40.6
RefineNet 73.6 58.9 46.5
FDNet-16s 73.9 60.3 47.4

setup in PASCAL VOC 2012. Multi-scale inference is also
adopted. The results are reported on Table 6. Similar to (Lin
et al. 2017a), pixel accuracy, mean accuracy and mean IoU
are used to evaluate all the methods. Some works make use
of both depth image and RGB image as input and obtain very
better result. For example, RDF (Park, Hong, and Lee 2017)
achieves 50.1% (mean IoU) by using depth information. For
a fair comparison, we only report the results training on only
RGB images. As is shown, FDNet-16s outperforms previous
work in terms of all metrics. In particular, our result is better
than RefineNet (Lin et al. 2017a) by 0.9% in terms of mean
IoU accuracy.

Conclusion
In this paper, we have presented the fully dense neural net-
work (FDNet) with encoder-decoder structure for semantic
segmentation. For each layer of the FDNet in the decoder
module, feature maps of almost all the previous layers are
aggregated as the input. Furthermore, we propose boundary-
aware loss function by paying more attention to the pixels
surrounding the boundary. The proposed FDNet is very ad-
vantageous to semantic segmentation. On the one hand, the
class boundaries as the spatial information are well recon-
structed by using Encoder-Decoder structure with boundary-
aware loss function. On the other hand, the FDNet learns
more efficiently with the more efficient gradient backpropa-
gation, much similar to the arguments already demonstrated
in ResNet and DenseNet. The experiments show that our
model outperforms previous works on two public bench-
marks when any training on other datasets is not considered.
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