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Abstract

Localizing objects in the real 3D space, which plays a cru-
cial role in scene understanding, is particularly challenging
given only a single RGB image due to the geometric infor-
mation loss during imagery projection. We propose Mono-
GRNet for the amodal 3D object localization from a monoc-
ular RGB image via geometric reasoning in both the ob-
served 2D projection and the unobserved depth dimension.
MonoGRNet is a single, unified network composed of four
task-specific subnetworks, responsible for 2D object detec-
tion, instance depth estimation (IDE), 3D localization and
local corner regression. Unlike the pixel-level depth estima-
tion that needs per-pixel annotations, we propose a novel IDE
method that directly predicts the depth of the targeting 3D
bounding box’s center using sparse supervision. The 3D lo-
calization is further achieved by estimating the position in
the horizontal and vertical dimensions. Finally, MonoGRNet
is jointly learned by optimizing the locations and poses of
the 3D bounding boxes in the global context. We demon-
strate that MonoGRNet achieves state-of-the-art performance
on challenging datasets.

Introduction
Typical object localization or detection from a RGB image
estimates 2D boxes that bound visible parts of the objects
belonging to the specific classes on the image plane. How-
ever, this kind of result cannot provide geometric percep-
tion in the real 3D world for scene understanding, which is
crucial for applications, such as robotics, mixed reality, and
autonomous driving. In this paper, we address the problem
of localizing amodal 3D bounding boxes (ABBox-3D) of
objects at their full extents from a monocular RGB image.
Unlike 2D analysis on the image plane, 3D localization with
the extension to an unobserved dimension, i.e., depth, not
solely enlarges the searching space but also introduces inher-
ent ambiguity of 2D-to-3D mapping, increasing the task’s
difficulty significantly.

Most state-of-the-art monocular methods (Xu and Chen
2018; Zhuo et al. 2018) estimate pixel-level depths and then
regress 3D bounding boxes. Nevertheless, pixel-level depth
estimation does not focus on object localization by design. It
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aims to minimize the mean error for all pixels to get an aver-
age optimal estimation over the whole image, while objects
covering small regions are often neglected (Fu et al. 2018),
which drastically downgrades the 3D detection accuracy.

We propose MonoGRNet, a unified network for amodal
3D object localization from a monocular image. Our key
idea is to decouple the 3D localization problem into several
progressive sub-tasks that are solvable using only monocu-
lar RGB data. The network starts from perceiving semantics
in 2D image planes and then performs geometric reasoning
in the 3D space.

A challenging problem we overcome is to accurately esti-
mate the depth of an instance’s 3D center without computing
pixel-level depth maps. We propose a novel instance-level
depth estimation (IDE) module, which explores large recep-
tive fields of deep feature maps to capture coarse instance
depths and then combines early features of a higher resolu-
tion to refine the IDE.

To simultaneously retrieve the horizontal and vertical po-
sition, we first predict the 2D projection of the 3D center.
In combination with the IDE, we then extrude the projected
center into real 3D space to obtain the eventual 3D object
location. All the components are integrated into the end-to-
end network, MonoGRNet, featuring its three 3D reasoning
branches illustrated in Fig. 1, and is finally optimized by a
joint geometric loss that minimizes the 3D bounding box
discrepancy in the global context.

We argue that RGB information alone can provide almost
accurate 3D locations and poses of objects. Experiments on
the challenging KITTI dataset demonstrate that our network
outperforms the state-of-art monocular method in 3D object
localization with the least inference time. In summary, our
contributions are three-fold:

• A novel instance-level depth estimation approach that di-
rectly predicts central depths of ABBox-3D in the absence
of dense depth data, regardless of object occlusion and
truncation.

• A progressive 3D localization scheme that explores rich
feature representations in 2D images and extends geomet-
ric reasoning into 3D context.

• A unified network that coordinates localization of objects
in 2D, 2.5D and 3D spaces via a joint optimization, which
performs efficient inference (taking ∼0.06s/image).
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Figure 1: MonoGRNet for 3D object localization from a monocular RGB image. MonoGRNet consists of four subnetworks
for 2D detection(brown), instance depth estimation(green), 3D location estimation(blue) and local corner regression(yellow).
Guided by the detected 2D bounding box, the network first estimates depth and 2D projection of the 3D box’s center to obtain
the global 3D location, and then regresses corner coordinates in local context. The final 3D bounding box is optimized in an
end-to-end manner in the global context based on the estimated 3D location and local corners. (Best viewed in color.)

Related Work
Our work is related to 3D object detection and monocular
depth estimation. We mainly focus on the works of studying
3D detection and depth estimation, while 2D detection is the
basis for coherence.

2D Object Detection. 2D object detection deep net-
works are extensively studied. Region proposal based meth-
ods (Girshick 2015; Ren et al. 2017) generate impres-
sive results but perform slowly due to complex multi-stage
pipelines. Another group of methods (Redmon et al. 2016;
Redmon and Farhadi 2017; Liu et al. 2016; Fu et al. 2017)
focusing on fast training and inferencing apply a single
stage detection. Multi-net (Teichmann et al. 2016) intro-
duces an encoder-decoder architecture for real-time seman-
tic reasoning. Its detection decoder combines the fast regres-
sion in Yolo (Redmon et al. 2016) with the size-adjusting
RoiAlign of Mask-RCNN (He et al. 2017), achieving a sat-
isfied speed-accuracy ratio. All these methods predict 2D
bounding boxes of objects while none 3D geometric features
are considered.

3D Object Detection. Existing methods range from
single-view RGB (Chen et al. 2016; Xu and Chen 2018;
Chabot et al. 2017; Kehl et al. 2017), multi-view RGB (Chen
et al. 2017; 2015; Wang et al. ), to RGB-D (Qi et al. 2017;
Song and Xiao 2016; Liu et al. 2015). While geometric in-
formation of the depth dimension is provided, the 3D detec-
tion task is much easier. Given RGB-D data, FPointNet (Qi
et al. 2017) extrudes 2D region proposals to a 3D viewing
frustum and then segments out the point cloud of interest ob-
ject. MV3D (Chen et al. 2017) generates 3D object propos-
als from bird’s eye view maps given LIDAR point clouds,

and then fuses features in RGB images, LIDAR front views
and bird’s eye views to predict 3D boxes. 3DOP(Chen et
al. 2015) exploits stereo information and contextual models
specific to autonomous driving.

The most related approaches to ours are using a monoc-
ular RGB image. Information loss in the depth dimension
significantly increases the task’s difficulty. Performances
of state-of-the-art such methods still have large margins
to RGB-D and multi-view methods. Mono3D (Chen et al.
2016) exploits segmentation and context priors to generate
3D proposals. Extra networks for semantic and instance seg-
mentation are required, which cost more time for both train-
ing and inference. Xu et al.(Xu and Chen 2018) leverage a
pretrained disparity estimation model (Mahjourian, Wicke,
and Angelova 2018) to guide the geometry reasoning. Other
methods (Chabot et al. 2017; Kehl et al. 2017) utilize 3D
CAD models to generate synthetic data for training, which
provides 3D object templates, object poses and their corre-
sponding 2D projections for better supervision. All previous
methods exploit additional data and networks to facilitate the
3D perception, while our method only requires annotated 3D
bounding boxes and no extra network needs to train. This
makes our network much light weighted and efficient for
training and inference.

Monocular Depth Estimation. Recently, although many
pixel-level depth estimation networks (Fu et al. 2018; Eigen
and Fergus 2015) have been proposed, they are not sufficient
for 3D object localization. When regressing the pixel-level
depth, the loss function takes into account every pixel in the
depth map and treats them without significant difference.
In a common practice, the loss values from each pixel are
summed up as a whole to be optimized. Nevertheless, there
is a likelihood that the pixels lying in an object are much
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Figure 2: Notation for 3D bounding box localization.

fewer than those lying in the background, and thus the low
average error does not indicate the depth values are accurate
in pixels contained in an object. In addition, dense depths are
often estimated from disparity maps that may produce large
errors at far regions, which may downgrade the 3D localiza-
tion performance drastically.

Different from the abovementioned pixel-level depth es-
timation methods, we are the first to propose an instance-
level depth estimation network which jointly takes semantic
and geometric features into account with sparse supervision
data.

Approach

We propose an end-to-end network, MonoGRNet, that di-
rectly predicts ABBox-3D from a single RGB image. Mono-
GRNet is composed of a 2D detection module and three ge-
ometric reasoning subnetworks for IDE, 3D localization and
ABBox-3D regression. In this section, we first formally de-
fine the 3D localization problem and then detail MonoGR-
Net for four subnetworks.

Problem Definition

Given a monocular RGB image, the objective is to lo-
calize objects of specific classes in the 3D space. A tar-
get object is represented by a class label and an ABBox-
3D, which bounds the complete object regardless of occlu-
sion or truncation. An ABBox-3D is defined by a 3D cen-
ter C = (Xc, Yc, Zc) in global context and eight corners
O = {Ok}, k = 1, ..., 8, related to local context. The 3D
location C is calibrated in the camera coordinate frame and
the local cornersO are in a local coordinate frame, shown in
Fig. 2 (b) and (c) respectively.

We propose to separate the 3D localization task into
four progressive sub-tasks that are resolvable using only a
monocular image. First, the 2D box B2d with a center b and
size (w, h) bounding the projection of the ABBox-3D is de-
tected. Then, the 3D center C is localized by predicting its
depth Zc and 2D projection c. Notations are illustrated in
Fig. 2. Finally, local corners O with respect to the 3D cen-
ter are regressed based on local features. In summary, we
formulate the ABBox-3D localization as estimating the fol-
lowing parameters of each interest object:

B3d = (B2d, Zc, c,O) (1)
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Figure 3: Instance depth. (a) Each grid cell g is assigned to
a nearest object within a distance σscope to the 2D bbox cen-
ter bi. Objects closer to the camera are assigned to handle
occlusion. Here Z1

c < Z2
c . (b) An image with detected 2D

bounding boxes. (c) Predicted instance depth for each cell.

Monocular Geometric Reasoning Network
MonoGRNet is designed to estimate four components, B2d,
Zc, c, O, with four subnetworks respectively. Following a
CNN backbone, they are integrated into a unified frame-
work, as shown in Fig. 1.

2D Detection. The 2D detection module is the basic mod-
ule that stabilizes the feature learning and also reveals re-
gions of interest to the subsequent geometric reasoning mod-
ules.

We leverage the design of the detection component in (Te-
ichmann et al. 2016), which combines fast regression (Red-
mon et al. 2016) and size-adaptive RoiAlign (He et al. 2017),
to achieve a convincing speed-accuracy ratio. An input im-
age I of sizeW×H is divided into an Sx×Sy grid G, where
a cell is indicated by g. The output feature map of the back-
bone is also reduced to Sx × Sy . Each pixel in the feature
map corresponding to an image grid cell yields a prediction.
The 2D prediction of each cell g contains the confidence that
an object of interest is present and the 2D bounding box of
this object, namely, (Prgobj , B

g
2d), indicated by a superscript

g. The 2D bounding box B2d = (δxb
, δyb , w, h) is repre-

sented by the offsets (δxb
, δyb) of its center b to the cell g

and the 2D box size (w, h).
The predicted 2D bounding boxes are taken as inputs of

the RoiAlign (He et al. 2017) layers to extract early features
with high resolutions to refine the predictions and reduce the
performance gap between this fast detector with proposal-
based detectors.

Instance-Level Depth Estimation. The IDE subnetwork
estimates the depth of the ABBox-3D center Zc. Given the
divided grid G in the feature map from backbone, each grid
cell g predicts the 3D central depth of the nearest instance
within a distance threshold σscope, considering depth infor-
mation, i.e., closer instances are assigned for cells, as illus-
trated in Fig. 3 (a). An example of predicted instance depth
for each cell is shown in Fig. 3 (c).

The IDE module consists of a coarse regression of the
region depth regardless of the scales and specific 2D location
of the object, and a refinement stage that depends on the 2D
bounding box to extract encoded depth features at exactly
the region occupied by the target, as illustrated in Fig. 4.
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Figure 4: Instance depth estimation subnet. This shows the
inference of the red cell.

Grid cells in deep feature maps from the CNN back-
bone have larger receptive fields and lower resolution in
comparison with that of shallow layers. Because they are
less sensitive to the exact location of the targeted object,
it is reasonable to regress a coarse depth offset Zcc from
deep layers. Given the detected 2D bounding box, we are
able to perform RoiAlign to the region containing an in-
stance in early feature maps with a higher resolution and
a smaller receptive field. The aligned features are passed
through fully connected layers to regress a delta δZc

in order
to refine the instance-level depth value. The final prediction
is Zc = Zcc + δZc .

3D Location Estimation. This subnetwork estimates the
location of 3D center C = (Xc, Yc, Zc) of an object of in-
terest in each grid g. As illustrated in Fig. 2, the 2D center b
and the 2D projection c of C are not located at the same po-
sition due to perspective transformation. We first regress the
projection c and then backproject it to the 3D space based
on the estimated depth Zc.

In a calibrated image, we elaborate the projection map-
ping from a 3D point X = (X,Y, Z) to a 2D point x =
(u, v), ψ3D 7→2D : X 7→ x, by

u = fx ∗X/Z + px, v = fy ∗ Y/Z + py (2)

where fx and fy are the focal length along X and Y axes, px
and py are coordinates of the principle point. Given known
Z, the backprojection mapping ψ2D 7→3D : (x, Z) 7→ X
takes the form:

X = (u− px) ∗ Z/fx, Y = (v − py) ∗ Z/fy (3)

Since we have obtained the instance depth Zc from the
IDE module, the 3D location C can be analytically com-
puted using the 2D projected center c according to Equa-
tion 3. Consequently, the 3D estimation problem is con-
verted to a 2D keypoint localization task that only relies on
a monocular image.

Similar to the IDE module, we utilize deep features to
regress the offsets δc = (δxc , δyc) of a projected center c
to the grid cell g and calculate a coarse 3D location Cs =
ψ2D 7→3D(δc + g, Zc). In addition, the early features with
high resolution are extracted to regress the delta δC between
the predicted Cs and the groundtruth C̃ to refine the final
3D location, C = Cs + δC.

3D Box Corner Regression
This subnetwork regresses eight corners, i.e., O =
{Ok}, k = 1, ..., 8, in a local coordinate frame. Since each
grid cell predicts a 2D bounding box in the 2D detector, we

apply RoiAlign to the cell’s corresponding region in early
feature maps with high resolution and regress the local cor-
ners of the 3D bounding box.

In addition, regressing poses of 3D boxes in camera co-
ordinate frame is ambiguous (Xu et al. 2018; Gao et al.
2018; Guizilini and Ramos 2018). Even the poses of two
3D boxes are different, their projections could be similar
when observed from certain viewpoints. We are inspired by
Deep3DBox (Mousavian et al. 2017), which regresses boxes
in a local system according to the observation angle.

We construct a local coordinate frame, where the origin is
at the object’s center, the z-axis points straight from the cam-
era to the center in bird’s eye view, the x-axis is on the right
of z-axis, and the y-axis does not change, illustrated in Fig. 2
(c). The transformation from local coordinates to camera co-
ordinates are involved with a rotation R and a translation C,
and we obtain Ocam

k = ROk + C, where Ocam
k are the

global corner coordinates. This is a single mapping between
the perceived and actual rotation, in order to avoid confusing
the regression model.

Loss Functions
Here we formally formulate four task losses for the above
subnetworks and a joint loss for the unified network. All the
predictions are modified with a superscript g for the corre-
sponding grid cell g. Groundtruth observations are modified
by the (̃·) symbol.

2D Detection Loss. The object confidence is trained using
softmax (s·) cross entropy (CE) loss and the 2D bounding
boxes B2d = (xb, yb, w, h) are regressed using a masked L1
distance loss. Note that w and h are normalized by W and
H . The 2D detection loss are defined as:

Lconf = CEg∈G(s · (Prgobj), P̃ r
g

obj)

Lbbox =
∑
g

1
obj
g · d(Bg

2d, B̃
g
2d)

L2d = Lconf + ωLbbox (4)

whereProbj and P̃ robj refer to the confidence of predictions
and groundtruths respectively, d(·) refers to L1 distance and
1
obj
g masks off the grids that are not assigned any object. The

mask function 1
obj
g for each grid g is set to 1 if the distance

between g b is less then σscope, and 0 otherwise. The two
components are balanced by ω.

Instance Depth Loss. This loss is a L1 loss for instance
depths:

Lzc =
∑
g

1
obj
g · d(Zg

cc, Z̃
g
c )

Lzδ =
∑
g

1
obj
g · d(Zg

cc + δgZc
, Z̃g

c )

Ldepth = αLzc + Lzδ (5)

where α > 1 that encourages the network to first learn the
coarse depths and then the deltas.



3D Localization Loss. This loss sums up the L1 loss of
2D projection and 3D location:

L2d
c =

∑
g

1
obj
g · d(g + δgc , c̃

g)

L3d
c =

∑
g

1
obj
g · d(Cg

s + δgC, C̃
g)

Llocation = βL2d
c + L3d

c (6)

where β > 1 to make it possible to learn the projected center
first and then refine the final 3D prediction.

Local Corner Loss. The loss is the sum of L1 loss for all
corners:

Lcorners =
∑
g

∑
k

1
obj
g · d(Ok, Õk) (7)

Joint 3D Loss. Note that in the above loss functions ,
we decouple the monocular 3D detection into several sub-
tasks and respectively regress different components of the
3D bounding box. Nevertheless, the prediction should be as
a whole, and it is necessary to establish a certain relation-
ship among different parts. We formulate the joint 3D loss
as the sum of distances of corner coordinates in the camera
coordinate frame:

Ljoint =
∑
g

∑
k

1
obj
g · d(Ocam

k , Õcam
k ) (8)

Implementation Details
Network Setup. The architecture of MonoGRNet is
shown in Fig. 1. We choose VGG-16 (Matthew and Rob
2014) as the CNN backbone, but without its FC layers. We
adopt KittiBox (Teichmann et al. 2016) for fast 2D detection
and insert a buffer zone to separate 3D reasoning branches
from the 2D detector. In the IDE module, a depth encoder
structure similar in DORN (Fu et al. 2018) is integrated to
capture both local and global features. We present detailed
settings for each layer in the supplemental material. There
are 46 weighted layers in total, with only 20 weighted layers
for the deepest path (i.e., from the input to the IDE output),
due to the parallel 3D reasoning branches. In our design,
there are 7.7 million parameters in all the 2D and 3D mod-
ules, which is approximately 6.2% of the fully connected
layers in the original VGG-16.

Training. The VGG-16 backbone is initialized with the
pretrained weights on ImageNet. In the loss functions, we set
ω = α = β = 10. L2 regularization is applied to the model
parameters with a decay rate of 1e-5. We first train the 2D
detector, along with the backbone, for 120K iterations us-
ing the Adam optimizer (Kingma and Ba 2015). Then the
3D reasoning modules, IDE, 3D localization and local cor-
ners, are trained for 80K iterations with the Adam optimizer.
Finally, we use SGD to optimize the whole network in an
end-to-end fashion for 40K iterations. The batch-size is set
to 5, and the learning rate is 1e-5 throughout training. The
network is trained using a single GPU of NVidia Tesla P40.
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Figure 5: 3D Localization Errors in the horizontal, vertical
and depth dimensions according to the distances between
objects and camera centers.

Experiment
We evaluate the proposed network on the challenging KITTI
dataset (Geiger, Lenz, and Urtasun 2012), which contains
7481 training images and 7518 testing images with cali-
brated camera parameters. Detection is evaluated in three
regimes: easy, moderate and hard, according to the occlu-
sion and truncation levels. We compare our method with the
state-of-art monocular 3D detectors, MF3D (Xu and Chen
2018) and Mono3D (Chen et al. 2016). We also present
the results of a stereo-based 3D detector 3DOP (Chen et
al. 2015) for reference. For a fair comparison, we use the
train1/val1 split following the setup in (Chen et al. 2016;
2017), where each set contains half of the images.

Metrics. For evaluating 3D localization performance, we
use the mean errors between the central location of pre-
dicted 3D bounding boxes and their nearest ground truths.
For 3D detection performance, we follow the official settings
of KITTI benchmark to evaluate the 3D Average Precision
(AP3D) at different Intersection of Union (IoU) thresholds.

3D Localization Estimation. We evaluate the three di-
mensional location errors (horizontal, vertical and depth) ac-
cording to the distances between the targeting objects and
the camera centers. The distances are divided into intervals
of 10 meters. The errors are calculated as the mean differ-
ences between the predicted 3D locations and their nearest
ground truths in meters. Results are presented in Fig. 5. The
errors, especially for in the depth dimension, increase as the



Method Type Time (s)
AP3D(IoU=0.3) AP3D(IoU=0.5) AP3D(IoU=0.7)

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

3DOP Stereo 4.2 69.79 52.22 49.64 46.04 34.63 30.09 6.55 5.07 4.10

Mono3D Mono 3 28.29 23.21 19.49 25.19 18.20 15.22 2.53 2.31 2.31

MF3D Mono 0.12 / / / 47.88 29.48 26.44 10.53 5.69 5.39

Ours Mono 0.06 72.17 59.57 46.08 50.51 36.97 30.82 13.88 10.19 7.62

Table 1: 3D Detection Performance. Average Precision of 3D bounding boxes on the same KITTI validation set and the
inference time per image. Note that the stereo-based method 3DOP is not compared but listed for reference.

distances grow because far objects presenting small scales
are more difficult to learn.

The results indicate that our approach (red curve) outper-
forms Mono3D by a significant margin, and is also supe-
rior to 3DOP, which requires stereo images as input. An-
other finding is that, in general, our model is less sensitive
to the distances. When the targets are 30 meters or farther
away from the camera, our performance is the most stable,
indicating that our network deals with far objects(containing
small image regions) best.

Interestingly, horizontal and vertical errors are an order
of magnitude smaller than that of depth, i.e., the depth error
dominants the overall localization error. This is reasonable
because the depth dimension is not directly observed in the
2D image but is reasoned from geometric features. The pro-
posed IDE module performs superior to the others for the
easy and moderate regimes and comparable to the stereo-
based method for the hard regime.

3D Object Detection. 3D detection is evaluated using the
AP3D at 0.3, 0.5 and 0.7 3D IoU thresholds for the car class.
We compare the performance with two monocular methods,
Mono3D and MF3D. The results are reported in Table 1.
Since the authors of MF3D have not published their vali-
dation results, we only report the AP3D at 0.5 and 0.7 pre-
sented in their paper. Experiments show that our method out-
performs the state-of-art monocular detectors mostly and is
comparable to the stereo-based method.

Our network is designed for efficient applications and a
fast 2D detector with no region proposal is adopted. The in-
ference time achieves about 0.06 seconds per image on a
Geforce GTX Titan X, which is much less than the other
three methods. On the other hand, this design at some de-
gree sacrifices the accuracy of 2D detection. Our 2D AP of
the moderate regime at 0.7 IoU threshold is 78.14%, about
10% lower than the region proposal based methods that gen-
erate a large number of object proposals to recall as many
groundtruth as possible. Despite using a relatively weak 2D
detector, our 3D detection achieves the state-of-the-art per-
formance, resorting to our IDE and 3D localization module.
Note that the 2D detection is a replaceable submodule in our
network, and is not our main contribution.

Local 3D Bounding Box Regression. We evaluate the re-
gression of local 3D bounding boxes with the size (height,
width, length) and orientation metrics. The height, width,
length of a 3D bounding box can be easily calculated from

Method
Size (m)

Orientation (rad)
Height Width Length

3DOP 0.107 0.094 0.504 0.580
Mono3D 0.172 0.103 0.582 0.558

Ours 0.084 0.084 0.412 0.251

Table 2: 3D Bounding Box Parameters Error.

its eight corners. The orientation is measured by the azimuth
angles in the camera coordinate frame. We present the mean
errors in Table 2. Our network demonstrates a better capa-
bility to learn the size and orientation of a 3D bounding box
from merely photometric features. It is worth noting that in
our local corner regression module, after RoiAlign layers,
all the objects of interest are rescaled to the same size to
introduce scale-invariance, yet the network still manages to
learn their real 3D sizes. This is because our network ex-
plores the image features that convey projective geometries
and semantic information including types of objects (e.g.,
SUVs are generally larger than cars) to facilitate the size and
orientation estimation.

Qualitative Results. Qualitative visualization is provided
for three typical situations, shown in Fig. 6. In common
street scenes, our predictions are able to successfully recall
the targets. It can be observed that even though the vehicles
are heavily truncated by image boundaries, our network still
outputs precise 3D bounding boxes. Robustness to such a
corner case is important in the scenario of autonomous driv-
ing to avoid collision with lateral objects. For cases where
some vehicles are heavily occluded by others, i.e., in (g), (h)
and (i), our 3D detector can handle those visible vehicles but
fails in detecting invisible ones. In fact, this is a general lim-
itation of perception from monocular RGB images, which
can be solved by incorporating 3D data or multi-view data
to obtain informative 3D geometric details.

Ablation Study
A crucial step for localizing 3D center C is estimating its 2D
projection c, since c is analytically related to C. Although
the 2D bounding box’s center b can be close to c, as is il-
lustrated in Fig. 2 (a), it does not have such 3D significance.
When we replace c with b in 3D reasoning, the horizontal
location error rises from 0.27m to 0.35m, while the verti-
cal error increases from 0.09m to 0.69m. Moreover, when
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Figure 6: Qualitative Results. Predicted 3D bounding boxes are drawn in orange, while ground truths are in blue. Lidar point
clouds are plotted for reference but not used in our method. Camera centers are at the bottom-left corner. (a), (b) and (c) are
common cases when predictions recall the ground truths, while (d), (e) and (f) demonstrate the capability of our model handling
truncated objects outside the image. (g), (h) and (i) show the failed detections when some cars are heavily occluded.

an object is truncated by the image boundaries, its projec-
tion c can be outside the image, while b is always inside.
In this case, using b for 3D localization can result in a se-
vere discrepancy. Therefore, our subnetwork for locating the
projected 3D center is indispensable.

In order to examine the effect of coordinate transforma-
tion before local corner regression, we directly regress the
corners offset in camera coordinates without rotating the
axes. It shows that the average orientation error increases
from 0.251 to 0.442 radians, while the height, width and
length errors of the 3D bounding box almost remain the
same. This phenomenon corresponds to our analysis that
switching to object coordinates can reduce the rotation am-
biguity caused by projection, and thus enables more accurate
3D bounding box estimation.

Conclusion
We have presented the MonoGRNet for 3D object local-
ization from a monocular image, which achieves superior
performance on 3D detection, localization and pose estima-
tion among the state-of-the-art monocular methods. A novel
IDE module is proposed to predict precise instance-level
depth, avoiding extra computation for pixel-level depth es-
timation and center localization, regardless of far distances
between objects and camera. Meanwhile, we distinguish the
2D bounding box center and the projection of 3D center for a
better geometric reasoning in the 3D localization. The object
pose is estimated by regressing corner coordinates in a local
coordinate frame that alleviates ambiguities of 3D rotations
in perspective transformations. The final unified network in-
tegrates all components and performs inference efficiently.
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