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Abstract. Current texture creation methods for image-based modeling
suffer from color discontinuity issues due to drastically varying conditions
of illumination, exposure and time during the image capturing process.
This paper proposes a novel system that generates consistent textures for
triangular meshes. The key to our system is a color correction framework
for large-scale unordered image collections. We model the problem as
a graph-structured optimization over the overlapping regions of image
pairs. After reconstructing the mesh of the scene, we accurately calculate
matched image regions by re-projecting images onto the mesh. Then the
image collection is robustly adjusted using a non-linear least square solver
over color histograms in an unsupervised fashion. Finally, a connectivity-
preserving edge pruning method is introduced to accelerate the color
correction process. This system is evaluated with crowdsourcing image
collections containing medium-sized scenes and city-scale urban datasets.
To the best of our knowledge, this system is the first consistent texturing
system for image-based modeling that is capable of handling thousands
of input images.

1 Introduction

The past few decades have witnessed the significant achievement of 3D recon-
struction. With the help of unmanned aerial vehicles and mobile devices, we
can recover the 3D structures of city-scale scenes from images with ease. More-
over, one of the advantages for image-based modeling is that the images can not
only be used to recover the 3D information, but also to do texture mapping for
surfaces so that the models are natural and photo-realistic. In the multi-view re-
construction setting, a set of images are captured so that they depict roughly the
same object from different view points. As camera parameters, such as white bal-
ance and shutter speed, are re-calculated for each image, the same object would
appear differently in images with different view angles. If the original images are
used in texture mapping, the mesh may contain undesired visual artifacts, which
harms the visual experience of image-based modeling.
? Tian Fang (tianft@cse.ust.hk) is the corresponding author.
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(a) (b) (c)

Fig. 1. Color correction for image-based modeling. (a) Color region correspondences
generated by the reconstructed model. The top picture shows the registered cameras
and the reconstructed mesh model. The colored regions are projected from a view pair
at the bottom (using different colors to represent different views). The yellow region is
the common region seen by the view pair, which provides the correspondence between
the two views for color correction. (b) The resulting textured model using our color
corrected images. (c) Textured model using the original images. It is evident that our
method can generate much more harmonious and visually agreeable textured model.

Therefore, we need an efficient pre-processing step to fit the unordered im-
age collection in a harmonious color tone. The objective is to use this set of
corrected images to render a consistent and harmonious 3D model, in terms of
fewer visual artifacts. Thus, we would like this color correction process to be
based on the geometric relations and the 3D scenes within the images. As an
existing technique, color balancing (or sometimes addressed as color transfer by
the computer graphics community) deals with transferring the color palette of
the source image to the target image, thus restricting the correction to an image
pair. We would like to delve deeper by applying color correction on unordered
image collections.

Color discontinuity also causes troubles for panoramic stitching and many
works [1–3] have been proposed to address this issue. However, these techniques
can not be directly applied to the 3D stitching problem due to the following rea-
sons. First, panoramic stitches are usually conducted in a linear fashion. Once
this linear order is decided, color adjustment for an image involves only the
neighboring images, which is not the case for unordered image collections that
form the graph structure with loops. Second, the images for panoramic stitching
are often captured roughly around a single axis of rotation, thus the color dis-
crepancy is less drastic, compared with multi-view stereo which involves more
complicated camera motions, particularly for scenes containing non-Lambertian
objects.

In this paper, we propose a method to address the color inconsistency prob-
lem in the image-based 3D reconstruction. Our method globally adjusts the color
of original images based on histograms of color distributions in the overlapping
regions. To get a precise overlapping region, we back-project the mesh to the
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images. Then the luminance component and the two chrominance components
are separately balanced in a graph-structured optimization framework. We use
the adjusted images for texturing and further processing.

Our method does not require a reference view, which differs from previous
works such as [4]. There are generally two reasons that this property is preferred.
First, we usually do not know the ground-truth reference view before doing the
color adjustment. Second, if several images depict the same natural scene, we
consider illumination variance in different images as noise and would like the
color correction process to manifest the authentic color.

2 Related Work
2.1 2-View Color Transfer
Many previous works have addressed the problem of adjusting the color tone
of a source image to a target image, commonly known as color transfer. These
various color transfer techniques can be generally categorized using two crite-
rions, namely parametric and non-parametric with regard to global and local.
For large-scale unordered image collections, color transfer within an image pair
serves as the basic building block which can be fitted in a large-scale optimiza-
tion framework. To avoid computational burden for 3D reconstruction, a global
model-based method is preferred as the basic unit in color correction of image
collections. Global color correction ensures that the changes made to the local
regions does not create visual artifacts to the textured model, while parametric
methods facilitates the combination of color transfer units.

Reinhard et al. [5] first propose a popular color transfer method based on
simple statistics of color distributions in images. To get rid of the undesired cor-
relations between different channels in RBG, their method operates in the lαβ
color space, which has little correlation between different axes for many natu-
ral scenes [6]. Tian et al. [7] apply color correction to panoramic imaging, by
matching the histograms of the overlapping region of two images. This method
is still limited to an image pair thus should be categorized to 2-view methods.
Recently, Hwang et al. [8] proposed a non-linear color transfer method based on
matched correspondences. Each RGB color is adjusted to the target value by
an affine transformation, using a process called moving least squares. Nguyen
et al. [9] propose a new method which takes into consideration the scene illumi-
nation and color gamut. After running white-balancing on both the source and
target images, they transform the luminance values of the target image using
Xiao et al.’s gradient preserving matching technique [10]. For a detail compar-
ison of several methods mentioned here, readers may refer to the quantitative
evaluation work of Xu et al. [11].

2.2 Ordered N-View Color Correction
Nanda and Cutler’s work [12] discusses several important issues for real-time
panoramas generated by omnidirectional cameras, including auto brightness cor-
rection, auto white balance correction, vignetting correction, etc. Brown et al. [1]
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propose the first automatic panoramic image stitching pipeline. To get a consis-
tent color in the panoramic image, they simply tweak the gain (a linear factor)
of intensity mean and apply multi-band blending [13] to further process visible
seams. Xiong et al. [3] proposes a color correction method for sequences of over-
lapping images, which is in particular useful for panorama stitching. To deal with
pixel overflow problem (pixels may be saturated during the color correction pro-
cessing), they use YCbCr color space and separately apply gamma correction for
the luminance component and linear correction for the chrominance components.
However, this method is restricted to sequences of images and is not suitable in
the large-scale unordered settings. The latter problem is much harder than tasks
such as panorama stitching since there are much more constraints between pairs
of images in a graphical style, and the color consistency is with respect to the
whole 3D scenes, in different view points. Yamamoto and Oi’s work [14] describe
a color correction method for multi-view video embedded in an energy minimiza-
tion scheme. This modeless non-parametric approach requires a manual decision
on a reference view and a sequential order of neighboring cameras.

2.3 Other Approaches

To generate a mesh with a consistent color tone, other methods are also ex-
tensively used. Moulon et al. [4] propose a global method based on histogram
quantiles of overlapping regions. This method uses VLD filter [15] to extend the
corresponding region of an image pair. While in our method, we take into consid-
eration the mesh to generate accurate corresponding regions, which particularly
benefits the consistent texture mapping. Waechter et al. [16] propose a texturing
system which corrects the mesh color on a per-triangle basis. Allène et al. [17]
employ a multi-band texture blending technique to adjust the color of overlap-
ping texture regions. However, texture blending has its own limitations and is
not able to cope with the drastic changes in different lighting conditions, which
has been come to realize by recent literature [11]. Though we do not perform
multi-band texture blending explicitly, our approach is orthogonal to it and in
practice we can combine these two approaches to deliver the best result.

Perhaps the most similar approach to our method is [18]. They also exploit
shared color properties over an image collection. While in our work, we use a
more precise way to generate correspondences through mesh re-projection. Our
method uniquely combines image collection editing with consistent mesh textur-
ing. Meanwhile, we are able to handle large-scale image collections containing
thousands of images.

3 Our Method

3.1 Overview

Our method builds atop the 3D reconstruction pipeline, which is assumed read-
ily available since our goal is to generate high-quality triangular meshes with
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Fig. 2. The workflow of our method. Our method builds upon the 3D reconstruction
pipeline, which consists of Structure-from-Motion, dense reconstruction and surface
reconstruction. After Joint optimization, we can obtain the corrected and harmonious
image collection. The color corrected image collection is further used for consistent
texturing.

no visual seams. Here we give a brief overview of the state-of-the-art image-
based modeling pipeline: given an unordered image collection I = {Ii} taken
under different exposure and illumination conditions, camera poses and a sparse
3D point cloud is reconstructed using Structure-from-Motion(SfM) [19, 20]. The
scene geometry is then reconstructed using state-of-the-art multi-view stereo
techniques [21, 22]. The dense stereo points are further processed and triangu-
lated to render a high-quality triangular mesh [23]. Here the image collection
I = {Ii} is registered in the same coordinate as the mesh, with all the geometric
relations such as camera poses P = {Pi} already known, thus enabling the in-
teraction of original images and textures. The color correction method is based
on the statistics of histograms thus it is robust to outliers in camera parameters
and the mesh.

For all image pairs with enough overlapping, we compute the common cor-
responding regions by back-projecting the mesh M, which contains a set of
triangular faces F = {fi}, to render two masks for a pair of overlapped images.
Previous methods [5, 14, 18] without the access to geometry information usually
generate this color correspondences using full frames or SIFT features. For mesh
texturing, our method enlarges the corresponding region and well satisfies the
purpose of texture editing. These corresponding regions impose constraints on
the camera network in a graphical representation. These constraints form a joint
optimization which aims to align the histograms of the common regions in an
image pair. We use a parametric model for the color adjustment of each image
and apply the color correction for each channel in YCbCr color space. The work-
flow of the system is shown in Figure 2. In the following sections, we describe
different components of our system in details.

3.2 Color Region Correspondences

For each image Ii that is successfully registered into the scene geometry, there
is a set of triangles Ti = {f (i)

1 , f
(i)
2 , . . . , f

(i)
ni } that can be seen by this camera.

Normally a face fi is seen by several cameras, which is the origin of visual seems
since the images used for texturing are captured under non-uniform conditions.
Rather than tackling this problem in the texture space on the basis of per tri-
angle, which indirectly solves the problem but is computationally intensive, we
would like to pre-process the images to set them in a uniform color tone. We
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begin by re-projecting the mesh to cameras and obtain the visible triangle set
Ti. To determine the visibility of each triangle, we first render a depth map by
re-projecting each triangle to the view. Each pixel value of the depth map saves
the id of the nearest triangle seen by view. If a pair of images Ii and Ij share
enough visibility overlapping, which is measured by the cardinality of Ti ∩ Tj ,
the color of the common regions in the two images should be roughly the same.
Suppose we denote the projection from 3D space to image Ii as Πi, we can
represent the common regions by a pair of 0-1 binary masks:

Mij =
∑

t∈Ti∩Tj

Πi(t), Mji =
∑

t∈Ti∩Tj

Πj(t) (1)

The two masks select the accurate corresponding regions which should pos-
sess the same color distribution. To robustly match the two regions without vi-
olating the smoothness of image, we propose to measure the discrepancy of the
color histograms, denoted as D(H(Ii ∗Mij), H(Ij ∗Mji)). Here H(Ii ∗Mij) is the
histogram of the color distribution in image Ii selected by mask Mij . To facili-
tate the implementation and make this method scalable to large-scale datasets,
we adopt statistical measures of the color histogram, instead of matching image
color pixel by pixel. Namely, we define D(H(Ii ∗Mij), H(Ij ∗Mji)) to be the
sum of pixel values that correspond to the same quantiles in the cumulative
distribution of color histograms.

3.3 Global Optimization of Color Distribution

We use a global transformation model to parameterize the adjustment of the
color histogram. Particularly, we solve the following optimization problem

minimize
{si},{oi}

∑
i,j,k

ρ
( (siQ(k)

ij + oi)− (sjQ(k)
ji + oj)

si + sj

)2

subject to 1− δs ≤ si ≤ 1 + δs,−δo ≤ oi ≤ δo, ∀i.

(2)

Where Q(k)
ij is the value of one color channel which corresponds to the k-th quan-

tile of the cumulative distribution function for the overlapping region. Simply
minimizing the numerator of the objective function, (siQ(k)

ij +oi)−(sjQ(k)
ji +oj),

would result in a set of trivial solution in which the scale factors {si} are all zeros
and offset factors {oi} are unbounded. Therefore, we cancel out this shrinkage
effect by normalizing the absolute error by the scale factors si + sj We also
set lower bounds and upper bounds for scale and offset parameters, which en-
sures that the corrected color does not deviate too much from the original color.
Equation 2 is a form of non-linear lest square problem with bounded constraints,
where ρ is the loss function used to deal with outliers. Specifically, we use the
Pseudo-Huber loss which writes as

ρ(x) = δ2(
√

1 + (x/δ)2 − 1) (3)
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Equation 3(with δ = 1) is a smooth approximation of Huber loss function
which is extensively used in robust estimation. The smooth approximation ver-
sion ensures the derivatives are continuous for all degrees. The optimization 2
can be solved using Levenberg-Marquardt algorithm [24, 25].

Image captured under the same scene usually possess stable chromatic char-
acteristics, while differ in luminance. On the other hand, images are often stored
in RGB space, which does not separate luminance component from chromatic
ones. Moreover, there are correlations between different channels of RGB color
space [8, 26]. Arbitrary modification to RGB channels independently would lead
to out-of-gamut error. Hence we apply the color correction in YCbCr color space,
in which the luminance component is separated out and the primary colors are
possessed into perceptually meaningful information. The transformation from
analog RGB to YCbCr can be expressed by a linear mapping: YCb

Cr

 =

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

RG
B

+

 0
128
128

 (4)

The optimization (2) is applied to three YCbCr channels independently. We
have also observed that in natural scene images, the two chrominance compo-
nents usually span a limited spectrum while the luminance Y channel is dis-
tributed over the whole range. Therefore, after the global color adjustment for
the whole image collection, some images may be subjected to underflow or over-
saturation. We remap the luminance range using a set of linear factors with
respect to all the images. Suppose that Q′(i)

α denotes the α-percentile of the lu-
minance histogram of the i-th image, which may be above 255 or under 0, the
5-percentile and 95-percentile luminance values are mapped to the lower limit
and the upper limit correspondingly.

0 = Sg maxi {Q′(i)
0.05}+Og

255 = Sg maxi {Q′(i)
0.95}+Og

(5)

In the end the luminance value is adjusted by the combination of these two
transformations

l′ = Sg(sil + oi) +Og (6)

The rescaling induced by Sg changes the absolute color value difference in a
homogenous way, hence it does not affect the uniformness of the optimization
result. The YCbCr value are then converted back to RGB color space, which
completes the color correction in the image space.

3.4 Graph Compression

As the number of images increases, color balancing becomes a complicated op-
timization problem on a large-scale graph structure, which is hard to solve in a
reasonable time. We apply two methods to tackle the efficiency issue. First, we
use the input camera graph given by SfM, thus restricting the problem size to
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be the same as the complexity of the scene. Second, a connectivity-preserving
edge pruning algorithm is applied on the scene graph to further speedup the
optimization process.

Graph simplification by edge pruning The goal of graph simplification is two-
folded: First, we would like to prune unimportant and redundant edge links so as
to accelerate the color correction process while preserving the general structure
of the scene. Second, we would like to rearrange the edge distribution such that
the color tone does not lean toward the densely-connected and over-sampled
regions.

To avoid defeating the purpose of accelerating color correction process, we
design a simple connectivity-preserving edge pruning (CPEP) method similar
to the spirit of [27]. The input is the scene graph G = (V, E) computed after
the mask generation. Each element in v ∈ V corresponds to an image Ii in the
unordered image collection I. We define the overlapping ratio between a pair of
images as ORij(Ii) = |{∆|∆∈Ii∩∆∈Ij}|

|{∆|∆∈Ii}| and ORij(Ij) = |{∆|∆∈Ii∩∆∈Ij}|
|{∆|∆∈Ij}| , where

|{∆|∆ ∈ Ii}| and |{∆|∆ ∈ Ij}|, |{∆|∆ ∈ Ii ∩∆ ∈ Ij}| represent respectively the
number of mesh triangles seen by image Ii, by image Ij and by both Ii and
Ij . Two nodes are connected if the edge weight eij , defined as the overlapping
ratio ORij =

√
ORij(Ii) ·ORij(Ij) between a pair of images, is greater than

a threshold δor, for which we set as 0.25 throughout the experiments. This al-
gorithm first sorts edges by weights and then simply prunes the weakest edges
iteratively while ensuring the connectivity of the whole graph (Algorithm 1). It is
assumed that the input scene graph is connected, otherwise we can first extract
the largest connected component of G and then apply the graph simplification
on the largest connected component.

In the extreme case, the simplest graph that preserves global connectivity is
its spanning tree with |V |−1 edges. A simplification ratio γsim controls the frac-
tion of edges to be pruned. CPEP algorithm prunes Nrm = γsim(|E| − (|V| − 1))
edges. We set γsim to be 0.9, thus keeping one tenth of original edges to lower
the complexity of the graph by an order of magnitude. The primary computa-
tional cost lies in testing whether the removal of an edge can disconnect the
graph (lines 6-9 in Algorithm 1). This operation takes O(|V|) time since we
can compute the number of connected components using depth-first-search on
the graph with the testing edge removed. Together with the cost of sorting
edges (O(|E| log |E|)), the total computational complexity of the algorithm is
O(|E| log |E|+Nrm|V|) = O(|E|(log |E|+ |V|)).

4 Graph Streaming on Large-Scale Datasets

The computation of mask pairs can be conducted in either streaming or parallel
fashions. In both cases, I/O is the major bottleneck since the back-projection
operation involve reading image pairs and marking common regions. To speedup
this process it is ideal to read a batch of images that covers a possibly large
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Algorithm 1 Connectivity-Preserving Edge Pruning (CPEP)
Require: The connected undirected scene graph G = (V, E), simplification ratio γsim
Ensure: A connected subgraph G′ = (V, E ′) of G
1: Sort E by edge weights in ascending order
2: Nrm ← γsim(|E| − (|V| − 1))
3: E ′ ← E
4: i← 0, j ← 0
5: while i < Nrm do
6: {test whether ej is a bridge}
7: E ′ ← E ′ \ ej

8: Compute the number of connected components of G′

9: if G′ has more than one connected component then
10: E ′ ← E ′ ∪ ej

11: else
12: i← i+ 1
13: end if
14: j ← j + 1
15: end while

return G′ = (V, E ′)

number of jobs that share the common image resources. Therefore, we design a
batch processing paradigm to accelerate the mask pair computation.

Since each mask computation job depends on a pair of images, these jobs and
down-sampled image resources constitute a bipartite graph which we called Job-
Resource-Depend-Graph (JRDG). For each batch iteration, maximum number of
jobs and their dependent resources are loaded up to the memory limit. The order
of loaded jobs can be randomly sequential or based on heuristics from JRDG. For
example, we can load the images in the decreasing order of the degree of resource
nodes. The pairwise mask computation is conducted after a batch loading and
the memory for image resources is released for the next iteration. The histogram
correspondence data for one iteration is streaming to the hard disk in order to
hold as many images as possible in the memory.

When the problem scale becomes large, removing unimportant edges by
checking connectivity is cumbersome and computationally expensive. To strike
the balance between efficiency and perfect consistency, we take the simplest of
Algorithm 1 for large-scale datasets (>10k images), in which γsim equals 1. The
benefit is that we can just extract the maximum spanning tree of the scene graph
without going through every weak edges, which greatly accelerates the graph sim-
plification process. To solve large-scale color optimization in a reasonable time,
we also made the approximation by using the conjugate gradients solver on the
normal equations involved in the Levenberg-Marquardt algorithm. This results
in an inexact step variant [28] of the Levenberg-Marquardt algorithm.
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Table 1. Computation time for different stages. Statistics shown from left to right:
dataset name, number of images, number of mask pairs, number of mask pairs after
graph simplification, time of computing the correspondence masks, time of optimization
on the simplified graph, time of optimization on the full graph, number of iterations
for loading the image collection (section 4). Small-scale experiments (less than 1000
images) were running on a multi-core PC with Intel(R) Core(TM) i7-4770K processors
and 32GB main memory, while large large-scale experiments were running on a server
with Intel(R) Xeon(R) E5-2630 v3 CPU and 128GB main memory.

Dataset #images #mask pairs #sim pairs mask computation time (s) graph sim opt time (s) graph full opt time (s) #batch
tunnel 370 14523 1755 95.9 48.7 372.0 1
hotel 237 11320 1345 102.4 20.8 159.5 1

monasterio 110 927 190 11.9 0.9 3.2 1
castle 200 9243 1104 173.4 27.0 196.1 1
city? 36480 4655k 36479 6.4 hours 25 N/A 2

5 Experiments

5.1 Implementation Details

In this section, we describe the implementation details as well as specific model
parameters. We focus on the details of the color correction engine and omit
techniques involving 3D reconstruction. For the later part readers may refer
to a series of literatures and open-source implementations, such as [29, 30] for
Structure-from-motion, [31, 32] for dense reconstruction and TexRecon [16] for
texturing.

We solve equation 2 using Ceres solver [33], which implements Levenberg-
Marquardt algorithm [24, 25] to solve the non-linear least-square problem with
bounded constraints. We choose a set of different bounded constraints for the Y
channel and for Cb, Cr channels, since the luminance component usually span
the whole value range while the two chrominance components are concentrated
on a narrow scope. We set δs = 0.4, δo = 30 for the luminance channel and
δs = 0.2, δo = 5 for the chrominance channels. The number of quantiles k is
fixed to be 10 across all the experiments.

5.2 Comparison Results

Small-scale benchmark dataset We first demonstrate the color correction perfor-
mance of our method on a synthetic dataset. To show that the proposed method
can work well under drastic color tone and illumination variations, we deliber-
ately apply color balance adjustments for the Herz dataset, which is consist of
8 images and widely is used in multi-view stereo benchmarks [34]. The first six
images in Herz are each set to the extreme of one color balance axis. The color
tones of them are each dominated by red, yellow, blue, green, cyan, magenta.
The seventh image is modified by changing the color contrast and the last im-
age is fixed unchanged. We show original images, modified images and the color
correction results in Figure 3. We compare our method with Moulon et al. [4],
with the unchanged image as the reference view. The performance on this small-
scale dataset is comparable though their method needs a pre-specified reference
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(a) Original images

(b) Synthetic images

(c) Our Method

(d) Moulon’s Method

Fig. 3. Color correction result for a synthetic dataset with intense color changes. (a)
the original image sequence; (b) the synthetic image sequence, modified by tuning color
balance in Adobe Photoshop; (c) the result of our automatic color correction pipeline;
(d) Moulon’s method [4] using the unchanged image as the reference view.

view. When applying on medium-sized datasets containing hundreds of images
(less than 300), however, it took hours for [4] to converge because of its L-∞
formulation, while our method took less than three minutes.

Texturing performance While the drastic color change in the above case is rarely
seen in the real world, we further evaluate our method on several natural scene
datasets, namely tunnel, monasterio, castle, and hotel. To the best of our knowl-
edge, there is no previous work that demonstrates the result of color correction
for an image collection on the level of mesh texturing, thus we only compare our
consistent texturing results with the commonly-used texturing pipeline. Namely,
the texturing pipeline can be viewed as a triangle labelling process that consid-
ers fragment quality and color discrepancy between bordering images in a MRF-
based energy function [17, 35]. No texture blending technique is used for all the
experiments, since we would like to evaluate the consistency of the corrected
image collection.

Figure 4 illustrates the work flow of our method on the tunnel dataset. This
dataset contains 370 images taken under drastic illumination changes. The in-
put images are first robustly registered into a common coordinate frame using
SfM. Then the multi-view stereo techniques reconstruct the high-quality surface
model. If we use original images to texture the model, it greatly harms the re-
alism of the scene and yields annoying seams. Although texture blending and
photo-consistency checking may partially solve this problem, these techniques
are often computationally expensive and perform poorly if the input datasets
are not balanced in the image space in the first place. Our method uses the
corrected images for texturing and achieves a smooth and uniform color tone
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(a) Input images (b) Structure-from-Motion (c) Dense reconstruction (d) Surface reconstruction (e) Color corrected texture mapping

Fig. 4. The work flow of our method shown by the tunnel dataset.
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Fig. 5. Comparison of our consistent texturing and inconsistent texturing for small
datasets. From top to bottom: tunnel, monasterio, castle, hotel.

without visual artifacts. The color correction process finishes in less than three
minutes for small-sized datasets in the aforementioned settings. The computation
time of different stages is showed in Table 1. The graph simplification operation
greatly accelerates the optimization solver without introducing much overhead.

The second row of Figure 5 shows the comparison result of the monasterio
dataset which contains 110 images captured in different days and different hours.
The visual seams disappear when the corrected images are used for texturing.
Other comparison results for small-scale datasets are also shown in Figure 5.

We demonstrate the performance of our method on large-scale image collec-
tions using the city dataset, which contains 36480 aerial images under illumi-
nation variations and occlusions. Figure 6 shows results of our method on the
large-scale city dataset. The main computation is spent on the mask generation
because of the heavy image I/O burden. Much simplification (spanning tree,



Color Correction for Image-Based Modeling in the Large 13

w
/o

 c
ol

or
 c

or
re

ct
io

n
ou

rs
de

ta
ile

d 
co

m
pa

ris
on

Fig. 6. Large-scale color correction on urban dataset. From top to bottom: normal
texturing without color correction; refined texturing using color corrected images; two
pairs of detailed texture comparison.

inexact step) is employed on the solver side to make the computation feasible,
as described in Section 4. Though a less accurate solver is applied on this large-
scale problem, the addition of color correction improved the texture uniformness
significantly. For more high-resolution comparison results, readers may refer to
the supplementary materials.

6 Conclusions and Discussions

In this paper, we present a global method to harmonize the color of an image
collection using the scene geometry. Since this method relies on the mesh re-
projection onto the original images, it is particularly useful for generating high-
quality textured meshes without visual seams. In addition, our method works
smoothly on large-scale datasets and imposes low computational burden for the
3D reconstruction pipeline. Moreover, our method can also be used to elevate the
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user experience for the display and exploration of large-scale image collections,
such as the Photosynth system [29].

We have implicitly assumed that the intrinsic color of the overlapping region
is view-independent, therefore for scenes with non-Lambertian objects the ac-
curacy of our method will be affected. In fact, the modeling of non-Lambertian
objects poses challenges for other aspects of multi-view reconstruction as well.
Avenues for future work include incorporating other techniques such as highlight
removal [36] to tackle the issues with reflective objects.
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