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Abstract

We propose an adaptive subgradient descent method to
efficiently learn the parameters of CRF models for image
parsing. To balance the learning efficiency and perfor-
mance of the learned CRF models, the parameter learn-
ing is iteratively carried out by solving a convex optimiza-
tion problem in each iteration, which integrates a proximal
term to preserve the previously learned information and the
large margin preference to distinguish bad labeling and the
ground truth labeling. A solution of subgradient descent up-
dating form is derived for the convex optimization problem,
with an adaptively determined updating step-size. Besides,
to deal with partially labeled training data, we propose a
new objective constraint modeling both the labeled and un-
labeled parts in the partially labeled training data for the
parameter learning of CRF models. The superior learning
efficiency of the proposed method is verified by the experi-
ment results on two public datasets. We also demonstrate
the powerfulness of our method for handling partially la-
beled training data.

1. Introduction
The Conditional Random Field [19] (CRF) offers a pow-

erful probabilistic formulation for image parsing problems.
It has been demonstrated in previous works [18, 11, 16] that
integration of different types of cues in a CRF model can
significantly improve the parsing accuracy, like the smooth-
ness preference and global consistency. However, how to
properly combine multiple types of information in a CRF
model to achieve excellent parsing performance still re-
mains an open question. For this reason, the parameter
learning of CRF models for image parsing tasks has re-
ceived increasing attention recently.

Considerable progress on the parameter learning of CRF
models has been made in the past few years. However, the
parameter learning of CRF models for the image parsing
tasks still remains a challenging problem for several rea-
sons. First, as the CRF models used in many image parsing
problems are of large scale and include expressive inter-

variable interactions, the computational challenges make
the parameter learning of CRF models difficult. Given a
large number of training images, the learning efficiency
would become a critical issue. Second, partially labeled
training data could cause the failure of some learning meth-
ods, which is common in image parsing. For example, it has
been found that the learned parameters involved in the pair-
wise smoothness potential are forced to tend toward zeros
when using partially labeled training data [25].

In this paper, we propose an adaptive subgradient de-
scent method that iteratively learns the parameters of CRF
models for image parsing. The parameter learning is itera-
tively carried out by solving a convex optimization problem
in each iteration. The solution for the convex optimiza-
tion problem gives a subgradient descent updating form
with an adaptively determined updating step-size which can
well balance the learning efficiency and performance of the
learned CRF models. Meanwhile, to deal with partially la-
beled training images that are common in various image
parsing tasks, a new objective constraint for the parame-
ter learning of CRF models is proposed, which models both
the labeled and unlabeled parts of partially labeled training
images.

1.1. Related work

The parameter learning of CRF models is an active re-
search topic, and investigated in many previous works [7,
27, 23, 20, 12, 2, 21, 15, 9]. Most current methods for the
parameter learning of CRF models can be broadly classi-
fied into two categories: maximum likelihood-based meth-
ods [19, 17] and max-margin methods [7, 27, 23, 12]. En
exhaustive review of the literature is beyond the scope of
this paper, and the following review will mainly focus on
the max-margin methods in which the parameter learning
of CRF models is formulated as a structure learning prob-
lem based on the max-margin formulation. Naturally, the
max-margin methods for general structure learning can be
used for the parameter learning of CRF models, such as the
1-slack and n-slack StructSVM(structural SVM) [27, 12],
M3N(max-margin markov network) [7] and Projected Sub-
gradient [23]. The 1-slack StructSVM [12] method is an im-
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proved version of the n-slack StructSVM, shown to be sub-
stantially faster than the n-slack StructSVM and the Struc-
tured SMO method proposed in the M3N [7]. The subgra-
dient method [23] is another popular solution for structure
learning problems, which is usually efficient and easy to
implement.

Based on the subgradient method, recent works on the
parameter learning of CRF models [15, 24] adopt differ-
ent decomposition techniques. In [15], a dual decompo-
sition approach for the random field optimization is com-
bined with the max-margin formulation for the parameter
learning of random field models, which reduces the training
of a complex high order MRF (Markov Random Field) to
the parallel training of a series of simple slave MRFs that
are much easier to handle. In [24], a decomposed learn-
ing method which performs efficient learning by restricting
the inference step to a limited part of the structured out-
put spaces is proposed. As the updating step-sizes for the
subgradient descent in these methods [23, 15, 24] are pre-
defined and oblivious to the characteristics of the data be-
ing observed, to balance the learning efficiency and perfor-
mance of the learned models, the updating step-sizes need
to be carefully chosen. Inappropriate updating step-sizes
could lead to bad performance of the learned CRF models or
slow convergence. This motivates us to improve the subgra-
dient method for the parameter learning of CRF models by
adaptively tuning the subgradient descent, termed as adap-
tive subgradient descent in this paper. The Polyak step-
size [22] is a possible solution, if the optimal value of the
objective function for the optimization problem is known
or can be estimated. However, for the parameter learning
problem of CRF models, the optimal value of the objective
function is unknown , and how to estimate it is also unclear.

Another important but less discussed issue in the previ-
ous max-margin methods for the parameter learning of CRF
models is related to partially labeled training data, which
is common in image parsing tasks. To deal with the par-
tially labeled training data, a maximum likelihood-based
method which approximates the partition function with the
Bethe free energy function is proposed in [28], with some
limitations of the Bethe approximation discussed in [10].
It has been observed that different treatments of the par-
tially labeled data could lead to quite different performance.
To deal with the partially labeled training data, we intro-
duce latent variables in the CRF models, inspired by the
work [29, 15].

2. Learning CRF to Parse Images
Random field models are widely used to formulate vari-

ous image parsing problems. These models are defined by
an undirected graph G = 〈V, E〉, with V and E denoting
nodes and edges in the graph. One discrete random variable
is associated with each node, which may take a value from

a set of labels L = {l1, l2, · · · , lL}. Given observation x,
the joint conditional distribution of the label assignment y
and x, P (y|x) can be expressed as:

P (y|x) =
1

Z
exp(−

∑
c∈C

Ψc(xc,yc)) (1)

The graph G consists of a set of cliques C, and each clique
c ∈ C is associated with a label assignment yc which is a
subset of y. Z =

∑
y′ exp(−

∑
c∈C Ψc(xc,y

′
c)) is the par-

tition function, a normalization term. The label prediction
is usually obtained by solving the following MAP (max a
posterior) inference problem:

y∗ = arg max
y∈L

logP (y|x) = arg min
y∈L

E(x,y) (2)

with the energy function E(x,y) =
∑
c∈C Ψc(xc,yc).

2.1. Max-margin formulation

First, we briefly review a well studied simple model to
organize the interaction between the parameters and fea-
tures in the energy function: the linear model that assumes
the potentials can be expressed as the following linear form:

Ψc(xc,yc) = wc · f(xc,yc) (3)

where wc is the parameters, and f(xc,yc) is the fea-
ture vector for a clique c. This linear model has been
widely used in the structure learning methods, like the
StructSVM [27, 12] and Projected Subgradient [23]. Based
on this linear model, the parameter learning of CRF mod-
els can be cast as a typical structure learning problem, with
the corresponding energy functions for the CRF models ex-
pressed as:

E(x,y) = w · Φ(x,y) =
∑
c∈C

wc · f(xc,yc) (4)

In the following, we review the widely used max-margin
formulation for the parameter learning of CRF models:

1-slack and n-slack StructSVM Given a training set
{(xn,yn)}Nn=1, using the n-slack StructSVM [27], the
learning problem can be formulated as [26]:

arg min
w

1

2
‖w‖2 + λ

N∑
n=1

ξn ,s.t. ∀n = 1, 2, · · · , N, ∀ŷn (5)

E(xn,yn)− E(xn, ŷn) + ∆(yn, ŷn) ≤ ξn, ξn ≥ 0

xn is the observation, yn, ŷn are the ground truth label
and predicted label, ∆(yn, ŷn) is the loss function. Sim-
ilarly, using the 1-slack reformulation proposed in the 1-
slack StructSVM [12], the learning problem can be formu-
lated as:

arg min
w

1

2
‖w‖2 + λξ (6)

s.t. ∀ŷ,H(w;x∗,y∗, ŷ) ≤ ξ, ξ ≥ 0



whereH(w;x∗,y∗, ŷ)

= w · [Φ(x∗,y∗)− Φ(x∗, ŷ)] + ∆(y∗, ŷ) (7)

=

N∑
n=1

w · [Φ(xn,yn)− Φ(xn, ŷn)] +

N∑
n=1

∆(yn, ŷn)

The objective constraint in the 1-slack StructSVM is ob-
tained by merging the objective constraints for each sample
of the training set {(xn,yn)}Nn=1 in the n-slack StructSVM,
with x∗ = ∪xn, y∗ = ∪yn and ŷ = ∪ŷn. The 1-slack and n-
slack StructSVM methods iteratively update the parameters
to be learned by the cutting plane algorithm. In each iter-
ation, they need to solve a a quadratic program (QP) prob-
lem, and the size of constraints in the QP problem linearly
increases with the number of iterations.

Unconstrained max-margin formulation An uncon-
strained formulation of (5) is adopted in [23], which uses
the projected subgradient method to minimize the follow-
ing regularized objective function:

ρ(w) =
1

2
‖w‖2 + λR(w) (8)

R(w) = max
ŷ
H(w;x∗,y∗, ŷ) (9)

where R(w) is the empirical risk. The parameters to be
learned are iteratively updated by:

wt+1 = P[wt − αtgw] (10)

where gw is the subgradient of the convex function (8), P
is the projection operator and αt is the predefined step-size
that needs to be chosen carefully. Inappropriate updating
step-size could lead to bad performance of the learned CRF
models or slow convergence.

3. Adaptive Subgradient Descent Learning
In this section, we propose an adaptive subgradient de-

scent algorithm for the parameter learning of CRF models,
as described in the algorithm 1. It is motivated by apply-
ing the idea proposed in the proximal bundle method [13]
that uses proximal functions to control the learning rate to
the subgradient methods in which the learning rate is sub-
tly controlled by the predefined step-sizes. In each iter-
ation, the parameter updating is carried out by solving a
convex optimization problem which integrates a proximal
term to preserve the previously learned information and the
large margin preference to distinguish bad labeling and the
ground truth labeling. The solution for the convex optimiza-
tion problem gives a subgradient descent update form with
an adaptively determined updating step-size for the parame-
ter learning, which well balances the learning efficiency and
performance of the learned CRF models. A typical training
process of using the proposed algorithm to train CRF mod-
els for image parsing is shown in Figure 1.

3.1. Adaptive subgradient descent algorithm

In each iteration of the algorithm 1, the adaptive subgra-
dient descent updating is carried out by solving the follow-
ing convex optimization problem which has a subgradient-
based solution with an adaptively determined step-size:

wt+1 = arg min
w

1

2
‖w −wt‖2 + Cξ (11)

s.t. ξ ≥ 0 ,H(w;x∗,y∗, ŷt) ≤ ξ and w � 0

On the one hand, the updated wt+1 is expected to distin-
guish bad labeling and the ground truth labeling y∗ with a
sufficiently large margin and thus progress is made. There-
fore, an objective constraint same as that in the 1-slack
StructSVM is used in the optimization problem (11):

H(w;x∗,y∗, ŷt) ≤ ξ (12)

ŷt is the merged labeling configuration that most violates
the constraint (12) for the current parameter wt. On the
other hand, a proximal term that forces the learned param-
eter wt+1 to stay as close as possible to wt is inserted into
the objective function of (11), so that the previous learned
information can be preserved.

Algorithm 1 Adaptive Subgradient Descent Algorithm
1: Input: training set {(xi,yi)}Ni=1

2: x∗ = ∪xi , y∗ = ∪yi, initialize w = w1

3: for all t = 1, 2, · · · ,M do
4: ŷt = arg maxŷ∈LH(wt;x

∗,y∗, ŷ)
5: C = κ/

√
t

6: wt+1 = arg minw
1
2‖w −wt‖2 + Cξ

s.t. ξ ≥ 0 ,H(w;x∗,y∗, ŷt) ≤ ξ and w � 0
7: end for
8: Output: wf = arg minwt∈{wt}Mt=1

H(wt;x
∗,y∗, ŷt)

In addition to the objective constraint (12), we add one
more constraint that the parameters to be learned are non-
negative, similar to the previous work [26]. The parameters
in the CRF models are required to be non-negative in many
CRF-based image parsing methods, so that different poten-
tials in the energy function can be weighted properly by the
parameters, and some efficient MAP inference algorithms
on CRF models can be applied, like the widely used graph
cut algorithm [5]. For the inference in the fourth step of
the algorithm 1, we use the α-expansion algorithm [5]. To
assure the α-expansion algorithm can be applied to find the
most violated labeling configuration in the fourth step, we
adopt the Hamming loss for the loss function ∆(y∗, ŷ) in-
volved in (12) as [26] did. Next, we solve the optimization
problem (11) by using standard tools from convex analy-
sis [4].



3.1.1 Subgradient-based solution

Let [d1, d2, · · · , dK ] = Φ(x,y∗) − Φ(x, ŷt), wt =
[wt1, w

t
2, · · · , wtK ], where K is the number of parameters to

be learned in the CRF models. We also assume that the en-
tries of [d1, d2, · · · , dK ] are sorted with the ascending order
of {wti/di, i = 1, 2, · · · ,K}. Then, we have:

Theorem 3.1 The subgradient-based solution for the opti-
mization problem (11) is:

wt+1
i =

{
wti − αtdi if wti − αtdi ≥ 0;
0 otherwise (13)

αt = max
α
L(α), 0 ≤ α ≤ C (14)

where [d1, d2, · · · , dK ] is the subgradient of the empirical
risk (9). The optimization problem (14) is a Lagrangian
dual problem of the optimization problem (11), where

L(α) = −1

2

n∑
i=1

(αdi − wti)2 −
1

2
F(α) + α∆(y∗, ŷt) (15)

F(α) =



∑K
i=n+1(αdi − wti)2 α ∈ [0,

wt
n+1

dn+1
];∑K

i=n+2(αdi − wti)2 α ∈ [
wt

n+1

dn+1
,
wt

n+2

dn+2
];

· · · · · ·∑K
i=n+j(αdi − wti)2 α ∈ [

wt
n+j

dn+j
, C];

(16)

Different from the Projected Subgradient method [23]
that uses predefined updating step-sizes, the updating step-
size αt in our algorithm is adaptively determined by solv-
ing the optimization problem (14), which can well balance
the learning efficiency and performance of the learned CRF
models. For the limit of space, the detailed derivation and
proof is presented in Appendix A of the supplementary ma-
terial [1].

Next, we briefly analyze how to solve the optimization
problem (14). As L(α) is a piecewise quadratic function of
α, in the kth piecewise definition domain of L(α), [αs, αe],
the maximum value of L(α) can be computed as:

Lmax
k =

{
L(α∗) α∗ ∈ [αs, αe];
max{L(αs),L(αe)} otherwise;

(17)

Setting the partial derivatives of L(α) with respect to α to
zero gives α∗:

α∗ =

∑n
i=1 w

t
id
t
i +
∑K
i=n+k w

t
id
t
i + ∆(y∗, ŷt)∑n

i=1 d
2
i +

∑K
i=n+k d

2
i

(18)

The adaptive step-size αt is the very one that maximizes
L(α) among all values of α. With the maximum value of
L(α) in each piecewise definition domain, αt can be effi-
ciently computed by searching the maximum value ofL(α),
Lmax = max{Lmax

k }jk=1.

grass tree building cow bike sheep plane 

Figure 1. The training process of using the algorithm 1 to train
a Robust PN model [14] for image parsing. The first column
shows the input training image; The second column is the unary
classification result; The third column is the output of the Robust
PN model with the learned parameters after the first iteration; The
fourth column is the output of the Robust PN model with the final
learned parameters which is obtained at the 5th iteration. These
output are obtained in the fourth step of algorithm 1.

As C is an upper bound of α, to assure that appropriate
progress is made in each iteration, C is initialized with a
large value κ (κ= 1 in our implementation), and iteratively
decreases to κ/

√
t, as stated in the fifth step of the algo-

rithm 1. Meanwhile, to avoid the trivial solution, we set a
non-zero low bound for α, η/

√
t (η = 10−8) in our imple-

mentation.

3.1.2 Convergence Analysis

Regarding the convergence of the proposed algorithm, we
have the following theorem:

Theorem 3.2 Suppose w∗ is the optimal solution that min-
imizes (8), t is the number of iterations, ∀ε > 0, the final
solution wf obtained by the algorithm 1 is bounded by:

lim
t→+∞

ρ(wf )− ρ(w∗) ≤ ε+ 1
2‖wf‖2 − 1

2‖w
∗‖2 (19)

The proof is given in the supplementary material [1].

4. Learning with Partially Labeled Image
Partially labeled training images are common in image

parsing problems, as it is usually very time-consuming to
get precise annotations by manual labeling. A typical par-
tially labeled example is shown in Figure 2(a). The unla-
beled regions in partially labeled training images are not
trivial for the parameter learning of CRF models, as ob-
served in previous works [25, 28]. As evaluating the loss on
the unlabeled regions during the learning process is not fea-
sible, discarding the unlabeled regions would be a straight-
forward choice, which excludes the unlabeled regions from
the CRF models built for the partially labeled training im-
ages in the learning process. However, without considering
the unlabeled regions, the interactions between the labeled



(a) (b) (c)

Figure 2. (a) A partially labeled training image. The unlabeled re-
gions are shown in black; (b) and (c), the pairwise CRF models
for the parameter learning with different ways to treat the unla-
beled regions in the training image. (b) using the constraint (20),
the nodes in the unlabeled regions and links linked to them are
shown in green. (c) discarding the unlabeled regions in the param-
eter learning, with the nodes and links for the unlabeled regions in
(b) excluded.

regions and the unlabeled regions will not be modeled in
the learning process. This could affect the parameter learn-
ing of CRF models. For example, for the boundaries be-
tween the labeled regions and unlabeled regions, as these
boundaries are mostly not the real boundaries between dif-
ferent categories, the pairwise smoothness should be pre-
served on these boundaries. Without the interactions be-
tween the labeled regions and the unlabeled regions, the
pairwise smoothness constraint on these boundaries will not
be encoded in the learning process.

To deal with partially labeled training images, we pro-
pose a new objective constraint for the parameter learning
of CRF models by modifying the objective constraint (12),
with the CRF models built for partially labeled training im-
ages in the learning process taking into both the labeled re-
gions and the unlabeled regions. Let Rk and Ru denote the
labeled regions and the unlabeled regions in the partially la-
beled training images, y∗k denote the ground truth label for
Rk. In each iteration of the algorithm 1, the obtained la-
bel prediction ŷt can be divided into two parts: the labeling
configuration for Rk and the labeling configuration for Ru,
and we denote them as ŷkt and ŷut . Then, the new objective
constraint is defined as:

H(w;x∗,y∗t , ŷt) ≤ ξ (20)

where the ground truth label y∗t = y∗k ∪ ŷut consists of the
ground truth label y∗k for Rk and the predicted label ŷut for
Ru. Note that when there are no unlabeled regions in the
training images, (12) and (20) are the same. A simple pair-
wise CRF model for a partially labeled training image is
shown in Figure 2, with different ways to handle the unla-
beled regions in the partially labeled training images illus-
trated.

5. Experiment
To evaluate the proposed method, we choose one typical

CRF model widely used in the image parsing: the Robust

PN model [14], with its energy function defined as:

E(x,y) =
∑
i∈V

Ψi(yi) +
∑

(i,j)∈E

Ψij(yi, yj) +
∑
c∈S

Ψc(yc)

= wu · fu(x,y) + wp · fp(x,y) + wc · fc(x,y)

= wT · Φ(x,y) (21)

where fu(x,y), fp(x,y) and fc(x,y) are the label de-
pendent feature vectors for the unary potential, pairwise
potential and high order potential to enforce label consis-
tency, and Φ(x,y) = [fu(x,y), fp(x,y), fc(x,y)], w =
[wu,wp,wc]. The parameters to be learned include wu =
[wu],wc = [wc] and wp = [w1

p, w
2
p, · · · , wLp ], where L is

the number of categories. Similar to [25], the unary poten-
tial is defined on pixel level, multiplied by the weight pa-
rameter wu. The Robust Higher Order Potential is defined
the same as that in [14], multiplied by the weight parameter
wc. The pairwise smoothness potential is defined as:

Ψij(yi, yj) =

{
λ(i, j)(wyip + w

yj
p ), yi 6= yj ;

0, yi = yj
(22)

where λ(i, j) = 1/(1 + c ‖ Di − Dj ‖2) is the contrast
sensitive between neighboring pixels. Di and Dj are the
RGB color vectors of nodes i, j ∈ T in the graph.

The evaluation of the proposed method is carried out
on two public datasets: the MSRC-21 dataset [25] and
CBCL StreetScenes dataset [3], with it compared with an-
other two widely used methods: the Projected Subgradi-
ent method [23]1 and the 1-slack StructSVM method [12]
which has been demonstrated to be much more efficient
than the n-slack StructSVM method [27]. [26] using the n-
slack StructSVM method is not included in the comparison,
as it needs to solve a large scale QP problem in each itera-
tion and will be very time-consuming, when the number of
training images is large.

The procedure of the evaluation includes three succes-
sive steps: 1) unary potential training which is identical in
our method, the 1-slack StructSVM method and the Pro-
jected Subgradient method; 2) parameter learning of the
CRF model; 3) testing of the learned CRF model. Each
dataset for the evaluation is randomly split with a parti-
tion ratio 45%/10%/45% for the above three steps respec-
tively. As our focus is evaluating the parameter learning
algorithms for CRF models, we choose simple patch level
features: Texton + SIFT for the unary potential training,
with the Random Forest classifier [6](50 trees, max depth
= 32) chosen as the classifier model. The evaluation proce-
dure is repeated five times with random split of the datasets
for the evaluation, and the results reported in the following
sections are the averaged results. The parameter learning of

1As the energy function for the Robust PN model is submodular, no
decomposition in [15] is necessary for the model, which makes [15] and
the Projected Subgradient method [23] equivalent in this situation.



the Robust PN model starts with the unary classification,
with the parameters to be learned initialized as wu = 1,
wp = 0, wc = 0 for our method, the 1-slack StructSVM
method and Projected Subgradient method. For the MAP
inference on the Robust PN model, the α-expansion algo-
rithm is used. For the performance evaluation, we use two
criteria: CAA (category average accuracy, the average pro-
portion of pixels correctly labeled in each category) and GA
(global accuracy, proportion of all pixels correctly labeled)
same as the previous works on the image parsing [25, 18].

Robust PN model Unary StructSVM [12] Subgradient [23] Our method
classification (25 iterations) (200 iterations) (5 iterations)

GA 0.63 0.692 0.701 0.708
CAA 0.421 0.476 0.507 0.503

(a) MSRC-21 dataset

Robust PN model Unary StructSVM [12] Subgradient [23] Our method
classification (33 iterations) (200 iterations) (5 iterations)

GA 0.666 0.687 0.692 0.696
CAA 0.623 0.641 0.644 0.647

(b) CBCL StreetScenes dataset

Table 1. The segmentation accuracy obtained with unary classifi-
cation, the Robust PN models learned by the 1-slack StructSVM
method, Projected Subgradient method and our method on the
datasets for the evaluation. The average numbers of iterations used
by different methods to achieve the reported segmentation accu-
racy are indicated in the parentheses.

5.1. Performance of the learned models

The segmentation accuracy achieved with the unary clas-
sification as well as the Robust PN models learned by our
method, the 1-slack StructSVM method and Projected Sub-
gradient method on the two datasets for the evaluation is
given in Table 1. As some critical parameters in the learning
formulation of our method, the 1-slack StructSVM method
and Projected Subgradient method could influence the per-
formance of the learned CRF models to varying degrees,
these critical parameters are carefully tuned for a fair com-
parison by trying different values, and the achieved best re-
sults are reported for the performance comparison in Ta-
ble 1. These critical parameters include the initial upper
bound of the updating step-size in our method, the updating
step-sizes and the weight of constraint violation in the Pro-
jected Subgradient method, the weight of slack variable in
the 1-slack StructSVM method. More details are explained
in the supplementary material [1]. Several examples of the
parsing results obtained by different methods are illustrated
in Figure 3.

MSRC-21 dataset This dataset contains 591 images cov-
ering 21 categories. The segmentation accuracy achieved

(a) (b) (c) (d) (e) (f)

Figure 3. The parsing results obtained by unary classification and
the Robust PN models learned by the 1-slack StructSVM [12],
Projected Subgradient [23] and our method on the MSRC-21
dataset and the CBCL street scene dataset. (a) test images; (b)
unary classification; (c) 1-slack StructSVM; (d) Projected Sub-
gradient; (e) our method, using the modified constraint (20); (f)
ground truth annotation

Time Cost StructSVM [12] Subgradient [23] Our methodLearning of Robust PN model
MSRC-21 114 min 935 min 26 min

CBCL 276 min 1512 min 51 min

Table 2. The average time cost of the 1-slack StructSVM method,
Projected Subgradient method and our method for the parameter
learning of the Robust PN models on the MSRC-21 dataset and
CBCL StreetScenes dataset. All methods are implemented with
C++ and tested on the same platform (Intel i7 2.8G, 8G RAM).

with the Robust PN models learned by our method, 1-slack
StructSVM method and Projected Subgradient method are
given in Table 1 (a). From the comparison in Table 1 (a), we
find that compared with the unary classification, the seg-
mentation accuracy is improved to varying degrees by the
Robust PN models learned by all the three methods. The
segmentation accuracy achieved with the Robust PN model
learned by our method outperforms that achieved with the
model learned by the 1-slack StructSVM method and is
comparable to that achieved with the Robust PN model
learned by the Projected Subgradient method.

CBCL StreetScenes dataset This dataset contains 3547
images of street scenes, covering nine categories: car,
pedestrian, bicycle, building, tree, sky, road, sidewalk, and
store. We exclude the three categories with frequency of
occurrence under 1%: pedestrian, bicycle and store in the
test. The segmentation accuracy achieved with the Robust
PN models learned by our method, the 1-slack StructSVM
method and Projected Subgradient method is given in Ta-
ble 1(b). Similar to the result on the MSRC-21 dataset, the
Robust PN models learned by all the three methods im-
prove the segmentation accuracy to varying degrees. We
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Figure 4. The number of iterations used to train the Robust PN

models in the Projected Subgradient method [23] and our method
to the corresponding parsing error achieved with the learned
Robust PN models on the MSRC-21 dataset and the CBCL
StreetScenes dataset. The parsing error is measured by the loss
of GA (global accuracy) and CAA (category average accuracy).

also find that the segmentation accuracy achieved with the
Robust PN model learned by our method is slightly better
than that achieved with the models learned by the 1-slack
StructSVM method and Projected Subgradient method.

5.2. Learning efficiency

The average time cost to train the Robust PN models
by different methods is presented in Table 2. The learn-
ing efficiency of our method and the Projected Subgradi-
ent method depends on the predefined numbers of iterations
used to train the CRF models, such asM in the algorithm 1.
The relationship between the numbers of iterations used to
train the Robust PN models and the corresponding perfor-
mance of the trained models is plotted in Figure 4 for these
two methods. In Figure 4, we find that on the test set of
both datasets for the evaluation, the parsing errors of the
Robust PN model learned by our method become stable
rapidly, after only five iterations. By contrast, on the test
sets of both datasets for the evaluation, the parsing errors of
the Robust PN model learned by the Projected Subgradient
method decreased gradually, approximately stable after 200
iterations. Therefore, in our experiment, the numbers of it-
erations used to train the CRF models in our method and
the Projected Subgradient method are set as 5 and 200 re-
spectively. For the 1-slack StructSVM method, it converged
after about 25 and 33 iterations on the MSRC-21 dataset and
CBCL StreetScenes dataset respectively, with the stop con-
dition that the learned parameters of the CRF model keep
unchanged, same as that in [26].

5.3. Learning with partially labeled training images

To evaluate the influence of the unlabeled regions in par-
tially labeled training images on the parameter learning of
CRF models, we test the three learning methods with two
different ways to treat the unlabeled regions, using the mod-
ified objective constraint (20) and discarding the unlabeled
regions. Before the evaluation, we first force the boundaries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1-slack StructSVM Projected Subgradient our method

using the constraint (20) discarding unlabled regions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1-slack StructSVM Projected Subgradient our method

using the constraint (20) discarding unlabled regions

(a) GA on MSRC-21 (b) GA on CBCL

0

0.1

0.2

0.3

0.4

0.5

0.6

1-slack StructSVM Projected Subgradient our method

using the constraint (20) discarding unlabled regions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1-slack StructSVM Projected Subgradient our method

using the constraint (20) discarding unlabled regions

(c) CAA on MSRC-21 (d) CAA on CBCL

Figure 5. The segmentation accuracy achieved on the MSRC-21
and CBCL dataset with the Robust PN models learned by our
method, the 1-slack StructSVM [12] and Projected Subgradient
method [23], using different ways to treat the unlabeled regions.
(a) and (b), the global accuracy on the MSRC-21 and the CBCL
dataset; (c) and (d), the category average accuracy on the MSRC-
21 and the CBCL dataset

(a) (b) (c) (d)

Figure 6. The parsing results obtained with the Robust PN mod-
els learned by our method, with different ways to treat the unla-
beled regions in partially labeled training images. (a) test images;
(b) using the modified objective constraint (20); (c) discarding the
unlabeled regions; (d) ground truth annotation

between different categories in the annotation masks unla-
beled by clearing the labels of the boundary pixels between
different categories, similar to the segmentation annotation
in the VOC dataset [8].

The evaluation result is given in Figure 5, and we find
that when using the modified objective constraint (20) for
the parameter learning, the parsing performance of Robust
PN models learned by our method and the Projected Sub-



gradient method is significantly improved on both datasets
for the evaluation. This indicates that modeling the in-
teractions between the labeled regions and unlabeled re-
gions of the partially labeled training images in the learn-
ing process is important for our method and the Projected
Subgradient method. Please note that the results of our
method and the Projected Subgradient method reported in
Table 1 are also obtained by using the modified objective
constraint (20), as many images in the two datasets for the
evaluation are partially labeled. For the 1-slack StructSVM
method, the learned models using the modified objective
constraint (20) achieve better performance on the CBCL
StreetScenes dataset and worse performance on the MSRC-
21 dataset. Several examples of the parsing results obtained
with the RobustPN models learned by our method are illus-
trated in Figure 6, with different ways to treat the unlabeled
regions in partially labeled training images.

6. Conclusion
We present an adaptive subgradient descent method to

learn parameters of CRF models for image parsing. In each
iteration of the algorithm, the adaptive subgradient descent
updating is carried out by solving a simple convex optimiza-
tion problem which has a subgradient-based solution with
an adaptively determined step-size. The adaptively deter-
mined updating step-size can well balance the learning effi-
ciency and performance of the learned CRF models. Mean-
while, the proposed method is capable of handling partially
labeled training data robustly, with a new objective con-
straint modeling both the labeled and unlabeled parts in the
partially labeled training images for the parameter learning.
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