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Abstract

The power of modern image matching approaches is still

fundamentally limited by the abrupt scale changes in im-

ages. In this paper, we propose a scale-invariant image

matching approach to tackling the very large scale variation

of views. Drawing inspiration from the scale space theory,

we start with encoding the image’s scale space into a com-

pact multi-scale representation. Then, rather than trying

to find the exact feature matches all in one step, we pro-

pose a progressive two-stage approach. First, we determine

the related scale levels in scale space, enclosing the inlier

feature correspondences, based on an optimal and exhaus-

tive matching in a limited scale space. Second, we produce

both the image similarity measurement and feature corre-

spondences simultaneously after restricting matching be-

tween the related scale levels in a robust way. The matching

performance has been intensively evaluated on vision tasks

including image retrieval, feature matching and Structure-

from-Motion (SfM). The successful integration of the chal-

lenging fusion of high aerial and low ground-level views

with significant scale differences manifests the superiority

of the proposed approach.

1. Introduction

The past few years have witnessed the growing appli-

cation of image-based 3D reconstruction due to the conve-

nience of image capturing, the progress of scalable recon-

struction algorithms [8, 52, 50, 17, 11, 12, 18, 33] and the

advance of 3D toolkit [45, 44, 48]. As the first yet nontrivial

step of standard SfM pipeline [1, 10, 39, 52], image match-

ing generally first selects similar image pairs from unstruc-

tured image sets, then establishes exact feature correspon-

dences between selected pairs for accurate camera registra-
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Figure 1: The top row visualizes the SIFT matches found by our

approach between images holding scale ratio around 55. The black

dots in below chart represent 69640 putative matches, character-

ized by feature scale ratio and descriptor distance. The yellow

squares denotes the false positive correspondences found by mod-

ern SIFT match strategies [23, 46, 43, 9]. Conversely, our ap-

proach first determines the related scale levels in scale space that

enclose the feature correspondences. Then image matching is re-

stricted between the related scale levels. The red box encloses the

90 feature pairs existing between related scale levels, including 20

inlier correspondences found eventually denoted by red triangles.

tion and structure recovery. However, modern matching ap-

proaches would get trapped when handling large differences

of view scales, e.g., the fusion case of street-to-aerial urban

reconstruction [38, 4].

The difficulties can be summarized in two aspects. On

one hand, devising scale-invariant similarity metric to iden-

tify whether two images share visual overlap is hard. On the

other hand, establishing exact feature correspondences al-

beit scale variations is harder. Concretely, image matching

across large scale differences has to include small-scale fea-

tures to establish correspondences. However, overwhelm-
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ing noisy and ambiguous feature pairs are thus introduced

and the matching process becomes much more prone to mis-

matches. A matching example of two images holding scale

ratio around 55 is shown in Figure 1. Massive putative SIFT

[23] matches are generated by nearest neighbor search as

denoted by the dense black dots in the below chart. The

false positive matches denoted by yellow squares are given

after passing the mutual best [43] and ratio test [23] filter-

ing as well as RANSAC verification [9]. The distance-based

filtering schemes [43, 23] could not overcome the noise be-

cause many outlier matches even hold much smaller dis-

tances than inlier ones due to the limitation of descriptor

discrimination and local patch ambiguity. RANSAC [9] is

neither robust in this case because there exist sufficient out-

lier matches that could follow certain geometric agreement.

Since it is intractable to undertake matching directly, we

draw inspiration from the scale space theory [21, 20] and

propose a novel scale-invariant image matching approach.

As the preprocessing step, we divide the image scale space

into multiple scale levels and encode it into a compact

multi-scale representation. Based on the representation, two

progressive matching steps are taken. The first step is the

exhaustive yet efficient scale level matching in limited scale

space. A scale level matching map that describes match-

ing responses between scale levels is thus obtained. Further

analysis of the map is performed to determine the related

scale levels in scale space that roughly enclose the inlier

feature correspondences. The second step is the scale-aware

image matching which restricts matching between the re-

lated scale levels and finally gives both the similarity mea-

surement and feature correspondences robustly at the same

time. As shown in Figure 1, the first step remarkably re-

duces the excessive match pairs to a small quantity of can-

didates enclosed by the red box. Hence, the rare inlier cor-

respondences denoted by red triangles are found in the sec-

ond step under protection against disturbing unrelated fea-

ture pairs.

Our contributions are two-fold. 1) The progressive im-

age matching approach restricts the correspondence search

of query features within limited related scale space and thus

boosts the accuracy and robustness of feature matching un-

der drastic scale variations. 2) Since the matching scope is

narrowed down in scale space, the matching efficiency gets

improved.

2. Related Work

To extend the matching ability of handling large scale

variations, abundant previous work has been proposed for

both image similarity measurement and feature matching.

For similarity measurement, Bag-of-Features (BoF)

model is widely used in image retrieval context [40, 31, 32].

However, it is generally very hard for flat BoF model to dis-

tinguish images with large scale differences from the neg-

ative ones due to lack of overlap. To enhance the capa-

bility of retrieving different scale images, the query expan-

sion technique [7] is equipped by [25, 26, 37]. The query

is repeatedly expanded and re-issued to retrieve spatially-

consistent images with slight scale differences by absorb-

ing new information from the growing scale range. But

the drifted expansion of the query has strong dependence

on image database in which smooth scale transition is re-

quired. Besides, Jegou et al. [13] first proposed and then Li

et al. [19] adopted the constraint of weak geometric consis-

tency for more robust similarity scoring. Arandjelovic et al.

[2] uses MultiVLAD heuristically to generate VLAD rep-

resentations for sub-images. But all of these would be out

of order under large scale variations where overwhelming

noise occurs.

In terms of feature matching, the key is to solve the fea-

ture correspondence problem. Generally, putative matches

are first found by exhaustive search or approximate search

[23, 29, 30, 42, 6], combined with some effective filtering

strategies like mutual best [43] and ratio test [23]. Finally,

robust statistical methods like RANSAC [9] follow to ap-

ply geometric constraints and reject outliers. In the mile-

stone paper [23], Lowe has proposed the high-performance

SIFT matching scheme. A number of extensions, includ-

ing SURF [3] for speed, ASIFT [28] for full affine invari-

ance, are proposed. However, all the matching approaches

[23, 30, 42, 6, 3, 28] are devised to tackle feature matching

at similar scales fundamentally. In some special cases, Shan

et al. [38] has to rely on geo-information to apply view-

dependent matching between ground and aerial images.

Complementary to all the work above, we dissect the

matching problem from the perspective of scale space

[21, 20] in this paper and seek to make both the similar-

ity metric and feature matching scale-invariant and indepen-

dent of any other auxiliary knowledge.

3. Scale-Invariant Image Matching

3.1. Overview

As observed by the literature [13, 19], two images per-

ceiving the same scene from similar viewpoints follow the

scale consistency: the scale ratios of inlier feature corre-

spondences are centralized around the value which we term

image scale ratio. Illustrative examples can be found in

Figure 2. The image scale ratio indicates that the matched

images are merely related in limited scale space.

Motivated by this, we propose a scale-invariant matching

approach organized as follows:

• Image scale space encoding. We divide the scale

space of an image into multiple scale levels evenly.

Then the BoF-based encoding strategy is applied to

represent an image compactly at multiple scale levels

for subsequent progressive matching.
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Figure 2: Illustration of three match pairs with image scale ratio

around 1, 2, and 4. The left column visualizes the feature matches.

The middle column is the PDF of scale ratios of the inlier feature

matches. Following the scale consistency [13, 19], the scale ratios

are quite centralized. Deduced from the scale consistency, inlier

correspondences are supposed to link between the scale levels in

scale space with consistent discrepancy as shown in the right col-

umn.

• Scale level matching. Two sets of scale levels are

matched exhaustively in limited scale space and a scale

level matching map denoting the matching responses

are generated. Then by imposing the scale consistency,

we convert the problem of discovering scale level rela-

tions to detecting the line pattern in the matching map.

• Scale-aware image matching. After obtaining the

scale level relations, image matching including both

similarity measurement and detailed feature matching

is restricted between the related scale levels.

3.2. Image Scale Space Encoding

Effective representation of an image is an open problem.

The basic requirements are distinctiveness for distinguish-

ing and repeatability for matching. With respect to current

representation methods [5, 34, 15, 31, 16, 49], repeatabil-

ity could not be preserved under large scale variations. In

other words, the representations of matched images with

large scale difference are distant in representation space. To

achieve scale-invariant repeatability, we seek to encode the

scale space [21] of an image into its representation. The

scale space theory [21, 20] considers image representation

at all scales simultaneously by successively suppressing fine

details with Gaussian smooth. Therefore, we combine the

compact representation method [31] and the idea of scale-

space representation [21] to encode the scale space in a

compact and comparable way.

First, we discretize the image’s scale space into multiple

scale levels with equal logarithmic range and group features

into the scale levels by their scales. Without loss of gener-

ality, we use SIFT features [23] below to elaborate on the

proposed algorithm. Scale space division in SIFT paradigm

can be naturally taken as layers of DoG pyramid:

[

l2{1,...,L}

{f |`(f) = l} ,
[

l2{1,...,L}

Ll, (1)

where `(f) gives the scale level indexed by the parameter

l 2 {1, ..., L} from which feature f is extracted. Since

nearby scale levels are separated by a constant multiplica-

tive factor, the feature scales tend to ascend and the feature

number tends to descend exponentially when the scale level

parameter increases.

Next, the BoF framework is adopted here to vectorize

scale levels, as it is the de-facto standard way to encode

local features [31, 13, 32, 16, 49]. Pre-trained from 128-

dimensional SIFT descriptor vectors in corpus, an overcom-

plete codebook is first constructed including a total of K vi-

sual words, i.e., V = [v1, ...,vK ] 2 R
128⇥K . Then, the de-

scriptor vector xn is assigned to the nearest visual word vk,

resulting in a unit vector un 2 R
K satisfying V · un = vk.

After that, by summing up all the unit vectors, the scale

level Ll is represented by the distribution histogram of the

visual words:

pl = w "
⇣

N
X

n=1

Ll
(xn) · un

⌘

, (2)

where N denotes the image feature number and Ll
(.) is the

indicator function of subset Ll. The Hadamard product "
with weight vector w 2 R

K assigns weights to each visual

word based on the tf-idf scoring scheme [31].

Finally, for an image comprising L scale levels, it can

be represented by a K ⇥ L matrix by stacking all its scale

levels after normalization:

P = [p1, ...,pL]. (3)

The multi-scale image representation explicitly encodes all

scale levels simultaneously and thus holds more powerful

describing capability in face of scale variations.

3.3. Scale Level Matching

After obtaining the multi-scale image representation, we

aim to discover how the scale levels of an image pair are

related. A scale level matching map is first generated by ex-

haustive scale level matching. Then the image scale ratio is

approximately determined by analyzing the matching map

while the scale consistency is imposed.

Scale Level Matching Map Since no prior information

is available, exhaustive scale level matching is performed.

The matching response, which can also be interpreted as

similarity, of two scale levels p and q is computed by

the normalized L2 distance of their representations, i.e.,
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Figure 3: Scale level matching maps of images X and Y in the

right column with scale ratio around 10. The overlap region is

marked in yellow box. The scale range of 1 to 256 is divided

into different numbers of scale levels. The higher brightness of

each square reflects the stronger matching response between cor-

responding scale levels. Following the scale consistency deduction

in Equation 5, line patterns in anti-diagonal direction are observed

indicating constant discrepancy between related scale levels.

s(p,q) = p
>

||p||2
· q

||q||2
. Then the scale level matching be-

tween two image representations P and Q comprising L

scale levels can be manipulated simply by matrix multipli-

cation:

M = P> ·Q. (4)

The resultant scale level matching map M is an L⇥ L ma-

trix and its element M(i, j) = p>
i · qj equals the matching

response of i-th scale level to j-th scale level of two im-

ages. Intuitively, the exhaustive scale level matching seems

costly. In fact, however, the matrix multiplication is quite

efficient because of the sparsity. The representation matrix

of an image with N features has at most N nonzero ele-

ments due to the hard assignment of descriptors to visual

words. Therefore, for two images with respectively N1 and

N2 features, the scale level matching takes no more than

min(N1, N2) float multiplications.

Scale Ratio Determination Because inlier feature cor-

respondences share consistent scale ratios [13, 19], it can

be deduced that the matches only link between scale lev-

els with consistent discrepancy. Concretely, let ⌧ denote

the scale factor separating nearby scale levels and ⇢ denote

the image scale ratio. Then the discrepancy of related scale

levels Lla and Llb should approximately satisfies the rela-

tionship formulated as

la − lb ⇡ logτ⇢. (5)

For better elaboration, an illustrative matching map of two

images with scale ratio around 10 is displayed in the first

picture in Figure 3. The scale range from 1 to 256 times is

evenly divided in logarithmic scale into 24 scale levels, so

the nearby scale levels are separated by the factor 2
1/3. Most

elements in the map assume zero response due to scarcity

of features in top scale levels and high irrelevance between

most scale levels. However, strong responses can be ob-

served along an anti-diagonal line which corresponds to the

constant discrepancy of scale levels around 9. Besides, the

discrepancy and the image scale ratio satisfy Equation 5

precisely, which justifies the deduction based on scale con-

sistency [13, 19] formulated in Equation 5.

Therefore, to determine the scale ratio is equivalent to

detecting the anti-diagonal line pattern in the matching map.

Specifically, we search along each anti-diagonal line and av-

erage all its elements. Then the averaged value is taken as

the matching response with respect to the scale level dis-

crepancy ∆l 2 {1− L, ..., L− 1}:

r(∆l) =

8

>

<

>

:

1

L−∆l

PL−4l
l=1

M(l, l +∆l) ∆l ≥ 0

1

L+∆l

PL
l=1−∆l M(l, l +∆l) ∆l < 0.

(6)

Finally, the desired scale level discrepancy is determined

by the discrepancy at which maximum matching response

is assumed:

∆l⇤ = argmax
∆l

r(∆l). (7)

And the image scale ratio can be approximately computed

by substitute the discrepancy ∆l⇤ into Equation 5.

Discussion The previous works, like WGC [13] and PGM

[19], also try to estimate the image scale ratio for filtering

out spurious matches. However, these Hough-Voting-based

techniques are quite vulnerable to noisy feature correspon-

dences caused by too large image scale ratio. The reason is

that the votes of scale ratio bins are obtained by accumulat-

ing the number of feature pairs [19] or weights of the com-

mon visual words to which the feature pairs are assigned

[13]. As a result, the votes exhibit a strong bias towards the

scale ratio near 1, because images generally have most of

their features at the lowest scale level and thus share most

putative feature correspondences at the lowest scale level

as well. Hence, the bias would mislead the Hough Voting

methods to the noisy and plausible estimation of the scale

ratio. Conversely, our method greatly suppresses noise by

two steps: First, divide the scale space into sliced scale lev-

els; Second, obtain the matching response for each scale ra-

tio hypothesis as the normalized similarity between the re-

lated scale levels. The effect of scale space division in sup-

pressing noise is illustrated in Figure 3. If the scale space

is divided into less scale levels, matching responses of un-

related scale levels increase because excessive noisy feature

pairs are introduced. When it comes to only one scale level,

it degenerates to the general case [23, 31, 13, 19] where the

full feature sets are matched directly. On the other hand,
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if the number of scale levels gets too large, a scale level

containing too few features can not be characterized effec-

tively and there is an increasing cost in terms of memory

consumption. As a good trade-off, we follow SIFT [23] to

divide each octave (separated by 2 times) of scale space into

3 scale levels in our experiments.

3.4. Scale-Aware Image Matching

Image matching gets easy after we are aware of the rela-

tions between image scale levels.

For similarity measurement, a scale-invariant similarity

metric is devised by averaging the matching responses of

the related scale levels. Formally the similarity between two

image representations P and Q is measured by

S(P,Q) = max
∆l

r(∆l) = r(∆l⇤), (8)

following Equation 6 and 7. After filtering out unrelated in-

formation, the metric is able to provide scale-invariant sim-

ilarity measurement robustly for image pairs.

In terms of feature matching, the correspondence prob-

lem is simplified into inter-level matching between related

scale levels. For a query feature fq 2 Lq
l , the search scope

is narrowed down to the related scale level Ls
l+∆l⇤ of search

image. Considering the quantization error when discretiz-

ing image scale space, we conservatively extend the search

scope by including neighboring scale levels, i.e. Ls
l+∆l⇤±1,

if they have non-zero matching responses against the query

scale level Lq
l . Within the two feature subsets, prevalent

matching framework can be applied in a more robust way

involving exact or approximate search [23, 29, 30, 42, 6] for

putative matches, combined with filtering strategies [23, 43]

and RANSAC [9] for outlier rejection.

The advantage brought by the inter-level matching is that

the number of reliable inlier correspondences gets raised.

This is because, after shrinking the search range in scale

space, more inlier correspondences survive thanks to the

distinctiveness relaxation, i.e., the constraint of feature dis-

tinctiveness will be relaxed merely inside the search scope.

Specifically, filtering strategies like ratio test [23] and mu-

tual best [43] are widely applied in feature matching. They

are very effective in rejecting many false matches but also

some proportion of correct matches as expense. However,

if the match scope is restricted to two small subsets, feature

pairs just need to be discriminative within the subsets rather

than the whole feature sets. Hence, more inlier feature pairs

could be preserved as practically verified by experiments in

Section 4.2.

3.5. Complexity Analysis

The matching efficiency is critical for match-intensive

tasks like SfM [39]. Assuming matching between two im-

ages each containing N features, the complexity of brute-

BF
Ours+BF

1          2           4           8         16         32         64    

80

60

40

20

0

Scale ratio

Time (ms)

Figure 4: Time of pairwise matching with respect to the image

scale ratio between around 50k×50k SIFT sets implemented by

GPU. Our approach keeps on improving the efficiency of brute-

force (BF) search as the scale ratio increases.

force (BF) search is O(N2). Approximate nearest neigh-

bor (ANN) search [23, 29, 30] generally reduces the com-

plexity to O(N · logN) while sacrificing the precision to

some degree. Cheng et al. [6] further reduces the complex-

ity through cascading hashing technique. On the contrary,

the overhead of our matching approach lies in two aspects:

the scale level matching and the inter-level feature match-

ing. Given the pre-trained vocabulary tree, the expenditure

of descriptor quantization and BoF scoring by scale level

matching is linear to the feature number. With respect to the

inter-level feature matching, the complexity by brute-force

search is turned into linearity to the number of involved can-

didate pairs between related scale levels. And the larger the

scale difference is, the lower the complexity would be. The

comparison of runtime with respect to image scale ratio us-

ing BF search is displayed in Figure 4. Certainly, the ANN

search [23, 29, 30] and hashing search [42, 6] can also be

equipped for acceleration.

4. Experiments

In this section, we would like to evaluate the perfor-

mance of the proposed scale-invariant matching approach.

Both the image similarity metric and the feature match-

ing are evaluated on both the benchmark datasets and our

own datasets with large scale variations. Moreover, a large

ground-aerial SfM experiment is conducted based on the

collaboration of similarity metric and feature matching.

4.1. Similarity Metric Evaluation

The scalable retrieval technique in [31] is used as the

baseline here, following the process of building a hierarchi-

cal vocabulary tree with branch factor 8 and maximum leaf

size 16 from the full image corpus and quantizing SIFT de-

scriptors [23] into leaf nodes. The proposed scale-invariant

similarity metric can be readily integrated into the imple-

mentation. The only variant is that we replace the original

scoring scheme with the proposed scale-invariant similarity

metric in Equation 8.

Firstly, the proposed similarity metric is evaluated on the

benchmark datasets Oxford [32] and Holidays [13]. The

statistical results are summarized in Table 1. Although very

rare and limited scale variations occur in the two datasets,
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Dataset
Oxford Holidays

mAP Time (s) mAP Time (s)

Baseline 0.515 840.9 0.607 697.1

Baseline + Ours 0.562 859.6 0.646 780.6

Table 1: Statistical image retrieval results on benchmarks Oxford

[32] and Holidays [13] achieved by the baseline [31] and the base-

line+our similarity metric.

[24/8]                 [612/24]           [420/56]

[9/50]          [514/38]            [964/49]

[53/17]         [90/23]            [850/36]

[15/16]        [742/4]          [863/5]

[59/20]        [87/22]          [800/112]

Figure 5: Our multi-scale retrieval dataset including 5 scenes.

In each row, camera poses are first displayed, then one of the 5

queries in each scene followed by 3 sample database images at

different scales. Common areas shared with the query are marked

by yellow bounding boxes. The two numbers in square brackets

above each image are the ranks given by the baseline [31] and

baseline+our similarity metric respectively.

Teniques None WGC HE
HE+

WGC
MA PGM

PGM+

HE+MA

Before 0.397 0.440 0.490 0.524 0.455 0.451 0.554

After 0.672 0.679 0.712 0.722 0.695 0.680 0.734

Table 2: Comparison of mAPs achieved by methods that combine

different techniques, WGC [13], HE [13], PGM [19], MA [14],

with the baseline approach [31]. After our similarity metric is ap-

plied in cooperation with these techniques, improvements in mAP

by a significant margin are observed.

moderate improvements in mean average precision (mAP)

are still observed without significant increase of running

time.

To further validate the retrieval performance in the pres-

ence of scale variations, we additionally collect a Multi-

scale image set comprising 7349 high resolution images and

5 different scenes, with maximum image scale ratio reach-

ing 10. Without loss of generality, we choose 5 closely-

captured images as queries for each scene. To obtain the

ground-truth match labels, we rely on the constructed 3D

model of each scene and project the mesh triangles to

database images to determine if they share overlap with the

queries. Camera motions and sample images of the dataset

are shown in Figure 5. The ranks of typical multi-scale

database images given by the baseline approach equipped

Dataset Method
#Matches Average

time (ms)1 2 3 4 5

Zoom+

Rotation

SIFT 2309 1773 603 374 112 59.16

SIFT+Ours 2506 1918 716 490 178 33.26

Improve (%) 8.5 8.2 18.7 31.0 58.9 43.8

Viewpoint

SIFT 1270 369 64 0 0 27.89

SIFT+Ours 1433 499 91 0 0 23.99

Improve (%) 12.8 35.2 42.2 N/A N/A 14.0

Table 3: Comparative matching results on Mikolajczyk benchmark

[24]. The statistics show the number of correct matches achieved

by exhaustive SIFT matcher [23] and our scale-invariant matcher

under increasing distortion of zoom plus rotation and viewpoint

change from pair 1 to 5. The match number and speed get im-

proved in all cases by our method. Both matchers fail under too

large viewpoint change in pair 4 and 5 of Viewpoint set.

with or without our similarity metric are also given. The

baseline method suffers from degeneracy when scale dif-

ferences increase. But our scale-invariant similarity metric

effectively preserves the high ranks of relevant images de-

spite scale variations. In the literature, a set of techniques

have been proposed for the image retrieval context, such as

weak geometric consistency (WGC) [13], Hamming Em-

bedding (HE) [13], pairwise geometric matching (PGM)

[19], Multiple Assignment (MA) [14] and so on. As the

proposed approach only revises the similarity metric, it is

actually complementary to almost all of these techniques

[13, 19, 14]. Therefore, we compare the performance of

the retrieval techniques before and after using our similarity

metric, as shown in Table 2. The mAPs all get boosted by a

significant margin after our metric is integrated. It demon-

strates the superiority of the proposed approach in tackling

large scale variations.

4.2. Feature Matching Evaluation

Feature matching performance is evaluated by the num-

ber of inlier feature correspondences found eventually. The

proposed scale-invariant matcher is implemented following

the procedure: First, the scale-invariant feature descriptors

are fed into a pre-trained vocabulary tree [31] and scale level

matching is conducted to determine the related scale lev-

els. Then putative matches between related scale levels are

found, combined with robust filtering strategies including

mutual best [43], ratio test [23] and RANSAC [9] to finally

produce geometrically-consistent matches.

In this part, we apply our matcher to SIFT features [23]

and compare it with the exhaustive SIFT matcher [23] on

the standard Mikolajczyk dataset [24]. The dataset is com-

posed of two image sets emphasizing scale and view point

changes respectively. Five image pairs (reference image vs.

images 1 to 5) are included in each set with increasing dis-

tortion. Both matchers are implemented based on the Sift-

GPU library [46] for acceleration. As shown in Table 3,

our matcher outperforms SIFT matcher in all cases in term

of match number thanks to the distinctiveness relaxation as

analyzed in Section 3.4. And the improvement is monotone
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Figure 6: Visualization of matching results using ORB [35], SURF [3] and SIFT [23] features by brute-force (BF) matcher and our scale-

invariant matcher. The two numbers in below square brackets denote the correct match numbers achieved by two methods respectively.
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Figure 7: (a) Capture pattern of book-cover image set. (b) Number

of correct matches with regard to image scale ratio in logarithm

scale achieved by SIFT matcher and ours. SIFT matching fails

when the image scale ratio exceeds 25 while our methods shows

its superiority in both match number and robustness to scale vari-

ations even when the image scale ratio approaches 60.

increasing as the distortion gets larger. Besides, less time

is consumed. As a common problem with SIFT matching,

our matcher is also limited by too large viewpoint changes

in Viewpoint set.

To further explore the robustness of our matching ap-

proach to scale variations, we collect a book-cover image

set composed of two series of photographs acquired from

two viewpoint angles 0° and 30° with increasing zoom as

illustrated in Figure 7(a). The 28 images have the same

size of 3024⇥4032 pixels. The closet-captured photograph

of a book cover is used as reference image and is matched

against other 27 ones. The number of correct SIFT matches

with regard to varying image scale ratio between 2 and 64

is summarized in Figure 7(b). Our scale-invariant matcher

achieves larger numbers of feature matches at both frontal

and oblique views and all scales. Exhaustive SIFT matcher

[23] totally fails when scale ratio goes beyond 25 while our

method successfully matches all 27 image pairs even though

the scale ratio approaches 60. Furthermore, our scale-

invariant matching approach is compared with the state-of-

the-art matching methods MODS [27] and KVLD [22] on

this image set. For fair comparison, our approach shares the

Scale ratio 8 16 32 36 42 48 55

MODS 129 99 19 0 0 0 0

KVLD 411 120 44 16 3 0 0

Ours 468 145 60 50 27 22 13

Table 4: Number of feature matches with respect to image scale

ratio obtained by MODS [27], KVLD [22] and our scale-invariant

matcher on the book-cover image set.

same SIFT detection process as KVLD and the same fea-

ture description process as MODS. As reported in Table 4,

our matching approach outperforms the other two in terms

of the match number.

As a versatile matching framework, our approach can be

applied to any scale-invariant features. Matching results of

ORB [35], SURF [3] and SIFT [23] features are visualized

in Figure 6. Improvements upon all feature types are ob-

served.

4.3. Ground-Aerial SfM Evaluation

In this section, we would like to evaluate the power of

our large scale-invariant matching approach with SfM ap-

plication. To this end, we collect a challenging Ground-

Aerial dataset with large variations of viewpoints and view

scales. As summarized in Table 5, the Ground-Aerial

image set comprises 10467 high-resolution images, 4730

(4000⇥3000) for aerial and 5737 (4032⇥3024) for ground,

and three main ground-aerial blocks. Following the match-

ing pipeline in [1, 10], we start with image retrieval to se-

lect top 120 candidates for each query and then perform

SIFT matching on candidate pairs. Our implementations

of retrieval and feature matching are the same as Section

4.1 and 4.2. For comparison, the standard image matching

framework involving the baseline retrieval technique [31]

and SIFT matching [23, 46] in Section 4.1 and 4.2 is also

conducted. Then, the canonical incremental SfM pipeline

[41, 47, 36, 51] follows to recover cameras and structures.

The matching performances are evaluated on the three in-

dividual blocks as well as the whole image set by counting
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Area #Images
#Aerial

images

#Ground

images

Median

scale ratio

Ours Standard

#Ground-aerial

retrieved pairs

#Ground-aerial

matched pairs

Time1

(ms)

#Ground-aerial

retrieved pairs

#Ground-aerial

matched pairs

Time1

(ms)

Block A 2309 822 1487 18 1339 919 5.24 104 0 78.42

Block B 3292 1945 1347 8 10946 7282 10.89 194 0 78.72

Block C 4866 1963 2903 10 10437 6129 10.95 646 0 94.81

All 10467 4730 5737 N/A 19717 13410 9.76 693 0 86.42

1 Average matching time per pair.

Table 5: Statistics and comparative matching results on Ground-Aerial dataset. Matching pipeline is conducted on three individual blocks

as well as the whole set. Our matching framework successfully produces a large amount of ground-aerial match pairs, while standard

matching framework [31, 23] obtains none of these connections. And the match efficiency is greatly improved by our approach at the

presence of large scale differences.

A

B

C

Ground-aerial match pairs Representative pairs Pairwise feature correspondences

B
lo

ck
 C

B
lo

ck
 B

B
lo

ck
 A

Global bird’s-eye view Semi-aerial view Streetview1 Streetview2

Figure 8: Visualization of ground-aerial matching results by our approach based on which complete structures and camera poses are

successfully recovered. The first row shows the constructed camera poses and sparse points observed from different views. Below that,

ground-aerial connections and sampled matching results are displayed in three colors for three blocks respectively.

the number of true positive ground-aerial image pairs that

pass the retrieval stage and then the feature matching stage.

Our scale-invariant matching framework succeeds in at-

taining abundant matches between ground and aerial images

with near decuple efficiency as shown in Table 5 and Fig-

ure 8. Thereby it ensures strong connectivity for complete

and accurate fusion of ground and aerial views eventually.

On the contrary, the standard image matching framework

happens to retrieve a low quantity of weak ground-aerial

image pairs. However, none of the pairs are successfully

matched by SIFT matching [23, 46] subsequently, which

leads to failure in giving complete SfM results.

5. Conclusion

In this paper, we have proposed a large scale-invariant

image matching approach that manages to tackle the drastic

scale differences robustly. It is composed of two progres-

sive matching steps: first the scale level matching to find

the related scale ranges following the scale consistency, and

then the scale-aware matching to compute image similarity

and find the exact feature correspondences. Its superior per-

formance has been demonstrated via rigorous evaluations

on retrieval and feature matching tasks as well as the very

challenging ground-aerial fusion experiment. Improvement

is expected if any more effective scale-space image encod-

ing methods in Section 3.2 are available in future work.
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