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Joint Segmentation of Images and Scanned Point
Cloud in Large-Scale Street Scenes with Low

Annotation Cost
Honghui Zhang, Jinglu Wang, Tian Fang, Long Quan

Abstract—We propose a novel method for the parsing of images
and scanned point cloud in large-scale street environment. The
proposed method significantly reduces the intensive labeling cost
in previous works by automatically generating training data from
the input data. The automatic generation of training data begins
with the initialization of training data with weak priors in the
street environment, followed by a filtering scheme to remove
mislabeled training samples. We formulate the filtering as a
binary labeling optimization problem over a conditional random
filed that we call object graph, simultaneously integrating spatial
smoothness preference and label consistency between 2D and
3D. Toward the final parsing, with the automatically generated
training data, a CRF-based parsing method that integrates the
coordination of image appearance and 3D geometry is adopted
to perform the parsing of large-scale street scenes. The proposed
approach is evaluated on city-scale Google Street View data, with
encouraging parsing performance demonstrated.

Index Terms—Segmentation, Street Scene, Image, Point Cloud

I. INTRODUCTION

The parsing of images and scanned point cloud in street
scenes has received significant attention recently because of
its fundamental impact on scene understanding, content-based
retrieval, and 3D reconstruction in the street environment.
Moreover, with the dramatically boosting volumes of street
view data on the Internet and the urgent requirement for virtual
urban applications, parsing methods applicable to large-scale
street scenes is in great demand. The parsing of street view
images has been extensively studied in previous works [1], [2],
[3], [4], [5], with impressive results demonstrated. In parallel,
great effort has been devoted to the segmentation of 3D point
clouds acquired by 3D laser range sensors in many previous
works [6], [7], [8], [9], [10].

Besides images or scanned point cloud individually, modern
street view data [11] includes both color images and 3D
scanned points captured simultaneously with the calibrated
cameras and laser scanners are widely applicable, as shown in
Figure 2. It has been demonstrated in the previous works [1],
[2], [3], [9] that the fusion of 2D appearance information
and 3D geometry information can significantly improve the
accuracy of the parsing of street scenes. However, to apply the

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

All authors are with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong, e-mail:
(zhhsmail@gmail.com, {jwangae, tianft, quan}@cse.ust.hk).

Fig. 1. Overview of the proposed method

traditional methods [1], [2], [3], [6], [7], [8], [9], [10] to the
large-scale parsing of street scenes, a large amount of training
data that can account for the vast visual and structural variance
of street environment is necessary. Unfortunately, such training
data is mostly obtained by tedious and time-consuming manual
labeling in the previous approaches, which inevitably becomes
an obstacle to applying these traditional parsing methods to the
large-scale parsing of street scene. Though there exist some
databases with annotations for the street scene, like the CBCL
Street Scenes database [12], they are still limited in scale and
variance of data sources.

To reduce the cost of manually annotating training data
for the parsing of large scale street scenes, we propose a
large scale parsing system that can automatically generate
training data from input data. Given the coordination of the
input images and point cloud in street scenes, the automatic
proposal of training data is achieved by fully utilizing the
prevailing knowledge of street environment. Intuitively, some
simple priors can be easily used to distinguish instances of
different categories in the street environment. For example,
the average height of a building above the ground should be
greater than a certain value, and the shape of the ground is
usually a planar surface. These priors may not be valid for
every instance of the categories, but valid for most of them,
and thus we call them weak priors. The weak priors are treated
as “weak classifiers” and are combined to recognize instances
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of different categories from the input data. The recognized
instances are likely to be misclassified since the weak priors
are solely from simple observations. We regard the recognized
result by the weak priors as initial training data with a certain
degree of noise. In the next step, a filtering scheme to remove
the mislabeled training samples in the initial training data is
introduced by formulating it as a binary labeling problem
over a CRF. The unary confidence for the initial labeling
is estimated by a cross-validation inspired algorithm. The
interaction term imposes the geometric spatial smoothness
and label consistency which characterizes the correspondences
between images and scanned point cloud and is encoded in a
carefully designed joint 2D-3D object graph.

Finally, with the automatically generated training data, we
use a CRF-based joint 2D-3D method to simultaneously seg-
ment the scanned point clouds and street view images into five
most common categories in the street environment: building,
car, tree, ground and sky as the previous works [13], [4] did.
An overview of the proposed method is given in Figure 1.

In summary, the contributions of our approach are three-
fold. First, the utilization of weak priors in both street view
images and scanned point cloud automates the generation
of training data, significantly reducing the intensive manual
labeling in previous works. To our best knowledge, this is the
very first exploration of this idea for scene parsing. Second,
the novel joint 2D-3D object graph significantly purifies the
automatically generated training samples. Last but not least,
integrated with the state-of-the-art CRF-based parsing tech-
niques, we demonstrate the potential of fully automatic large-
scale parsing of street scene with comparative performance
to that achieved by using manually labeled training data. The
rest of this paper is organized as follows: In Section II, some
related works are reviewed. Then, we introduce the automatic
generation of training data In Section III and the CRF-based
parsing module In Section IV; Last, we present the experiment
evaluation in Section V, and conclude in Section VI.

II. RELATED WORK

For the parsing of street view images, different methods
have been proposed [2], [3], [13], [4], [14], which usually for-
mulate the parsing problem with graphical models, such as the
CRF. In [2], a multi-view parsing method for image sequences
captured by a camera mounted on a car driving along streets
is proposed, with SfM(Structure from Motion algorithm) [15]
used to reconstruct the scene geometry. Similar works were
introduced in [3], using dense depth maps recovered via multi-
view stereo matching techniques as cues to achieve accurate
scene paring. In [5], the temporal consistency between con-
secutive frames and 3D scene geometry recovered by stereo
techniques are explored to improve the parsing accuracy of
street view images. In [16], the authors jointly address the
semantic segmentation and dense 3D scene reconstruction by
learning appearance-based cues and 3D surface orientations
and performing class-specific regularization. For the parsing of
still images, a hierarchical two-stage CRF model is proposed
in [4] to segment images of street scenes.

The semantic segmentation of scanned point cloud in street
environment is closely related to the parsing of street view

Fig. 2. A 3D view of the street view data. The scene is rendered by fusing
the point cloud captured by laser scanners and the images captured by color
cameras registered to the laser scanners.

images, and well studied in the previous works [6], [8], [9].
In [6], [7], learning-based methods for segmenting 3D scan
data into objects or object classes are proposed, with only 3D
information used. In [9], the authors introduced a probabilistic,
two-stage classification framework for the semantic segmen-
tation of urban maps as provided by a mobile robot, using
both appearance information from color images and geometric
information from scan data. A similar work was introduced
in [8], incorporating visual appearance by projecting the laser
returns into images collected by a calibrated camera mounted
on the vehicle. Without exception, the training data in all these
methods [2], [3], [4], [6], [8], [9] is obtained by manually
labeling.

III. AUTOMATIC GENERATION OF TRAINING DATA

The automatic generation of training data includes two suc-
cessive steps: 1) labeling initialization in the input data which
includes both scanned point cloud and images; 2) filtering of
mislabeled training samples. For the labeling initialization, ob-
jects of different categories are first segmented in the scanned
point cloud, and recognized with weak priors about these
categories in 3D space. Then, we transfer the labeling of the
recognized objects from 3D space to image space to initialize
the training data for the street view image parsing. For the
category sky that does not exist in the scanned point cloud,
we directly initialize the training data for it in images with
proper weak priors in image space. As the weak priors used
to initialize the training data are just based on some simple
observations, there are inevitably some mislabeled training
samples, which could affect the performance of the street
view image parsing significantly. To remove those mislabeled
samples in the initialized training data, we propose a filtering
algorithm in Section III-C. First, we introduce the labeling
initialization in the scanned point cloud and images.

Data preprocessing Using the mobile platform (usually
a car) which the data capturing equipments mount on as a
reference, the height and depth information of each point in
the scanned point cloud are estimated. The normal directions
of points in the scanned point cloud are estimated by the tensor
voting algorithm [17], with isolated points removed.
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A. Labeling Initialization in Scanned Point Cloud

The labeling initialization starts with extracting objects of
different categories from the scanned point cloud with the pro-
posed object-model-based extraction algorithm, as described
in Algorithm 1. Objects of different categories are extracted
and recognized sequentially, in the order: ground, building,
car and tree. As laser rays cannot reach the sky, the category
sky is excluded here.

Algorithm 1 Object-Model-Based Extraction
1: Input : point cloud P
2: for all C ∈ {ground, building, car, tree} do
3: Construct a KNN(K-nearest-neighbor) graph for points,

GC = 〈P, EC〉, with the length of each edge smaller
than κ;

4: # Recognize components of different categories
5: Extract connected components {Si} from GC and set

TC = ∅
6: for all S ∈ {Si} do
7: if S fits the object model for C then
8: Insert S into TC and remove S from {Si}
9: end if

10: end for
11: # Merge components of different categories
12: for all T ∈ TC do
13: for all S ∈ {Si} do
14: if The shortest distance between T and S, D < ε

& T ∪ S fits the object model for C then
15: T = T ∪ S, {Si} = {Si} − S
16: end if
17: end for
18: Label T as category C, and remove it from P
19: end for
20: end for

Based on some weak priors about each category, the object
model for the category specifies several discriminative prop-
erties for recognizing objects of the category, which includes
properties of the following several aspects:

(1) Width fw, length of an object along the scan direction.
(2) Average height above the groundfh, the average height

of all points in an object.
(3) Shape, the saliency feature [18] can distinguish between

three basic shapes of objects: line, surface and scatter cloud.
Suppose the saliency feature for an object is (λ1, λ2, λ3),
sorted in descending order, which are the eigenvalues of the
covariance matrix for all points in an object. If λ1 � λ2 ≈ λ3,
the shape of the object is a line; If λ1 ≈ λ2 ≈ λ3, the shape
of the object is a scatter cloud; If λ1 ≈ λ2 � λ3, the shape
of the object is a surface.

(4) Ratio of points whose dominant normal direction are
vertical and horizontalRv , the ratio of points in an object with
Nz ≥ Nx, Nz ≥ Ny; Rh, the ratio of points in an object with
Nz ≤ Nx, Nz ≤ Ny . (Nx, Ny, Nz) is the normal vector for a
point, and z is the vertical direction.

The object models for different categories are presented in
Table I. A typical labeling initialization result obtained by
Algorithm 1 is shown in Figure 3. The model parameters for

(a)

(b)

Fig. 3. Labeling initialization in the scanned point cloud with Algorithm 1.
(a) the initial labeling of city-scale scanned point cloud. Different categories
are denoted with different colors: red for building, green for tree, gray for
ground, purple for car and yellow for unlabeled points. (b) a local initial
labeling, with the extracted objects shown in different colors in the left image
and the initial labeling shown in the right image.

Object Model Properties
fw Shape Rv & Rh fh

ground > 12m surface Rv > 0.5 < 0.5m
building > 12m not a line Rh > 0.5 > 5m

car 1 ∼ 10m scatter cloud - 0.5 ∼ 2.5m
tree 1 ∼ 10m scatter cloud - 1 ∼ 10m

TABLE I
Object models for different categories

these categories are estimated with very few instances (¡ 10),
since the the raw initialization will be purified in the next
stage.

B. Labeling Initialization in Images

With the initialized labeling of the categories: ground, build-
ing, car, tree in the scanned point cloud and the projections
of 3D points to images, the labeling initialization for these
categories in image space is carried out by transferring the
initialized labels of 3D points to image space. For the category
sky not initialized in the scan data, initial guess is carried out
in the image space with the following priors:

(1) Existence of 3D projections: As the scan laser ray cannot
reach the sky, the existence of 3D projections in images is a
strong indicator of non-sky region.

(2) Region Color Variance: The color variance of sky
regions are usually small.

(3) Position in images: As the images are taken on ground
level, the sky regions in images mostly appear in the upper
part.

Before applying these weak priors, we first create super
pixel partition of images with the method [19]. Then, candi-
date superpixels that satisfy the following requirements are
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selected: 1) no 3D projections in the superpixel; 2) color
variance s < st (st = 25), which is measured by the max
color (RGB space) difference of any two pixels within the
superpixel; 3) average height h < ht (the height is scaled to
[0, 1] against the image height, ht = 0.25). Last, some pixels
are randomly sampled from these candidate superpixels and
assigned the label sky.

C. Filtering of Mislabeled Training Samples
As the automatically initialized training samples are gen-

erated with only weak priors, some of them are probably
mislabeled. Meanwhile, the registration error between images
and scanned point could also cause the mislabeling. As well
known, noise in training data could severely degrade the
performance of the trained classification models. To remove
the mislabeled training samples in the initialized training
data, we propose a mislabeling filtering scheme based on
the flexible CRF formulation [20], [21]. The confidence for
the initial labeling served as the unary potential in CRF-
based formulation is estimated jointly with the appearance
information from 2D images and geometric information from
3D scanned point cloud. However, more than the estimated
confidence in the initial labeling that was used to identifies
the mislabeled training samples in the previous work [22], we
integrate the spatial smoothness and label consistency between
images and scanned point cloud as well. All these cues are
integrated into a CRF model that we call object graph to
robustly identify and remove the mislabeled training samples.

1) Estimation of confidence in the initial labeling: Our
confidence estimation for the initial labeling, as described in
Algorithm 2, is inspired by the previous work [22]. Please note
that in Algorithm 2, the confidence estimation for the initial
labeling of different categories is performed independently, in
both images and scanned point cloud. The estimation process
for each category follows the standard Leave-one-out cross-
validation of multiple rounds with random data partitions. In
each round of the cross-validation, the initial training data is
randomly partitioned into two sets, training set and testing
set. A binary classifier is trained by the data from training
set. Suppose the binary classifier performs better than random
guess, if the initial label of a sample from testing set agrees
with that predicted by the trained classifier, then the probability
that the initial label is correct is large than 1/2. As the testing
in each round of the cross-validation is based on random data
partition and thus can be treated as independent testing, the
more times a sample’s initial label agrees with the predicted
label, the more likely its initial label is correct.

In the following, we use P(y, k) to denote the probability
that a sample is classified as a positive sample k times during
the N iterations in the algorithm 2, where y ∈ {−1,+1}
denotes the true label of the sample. Suppose the classification
accuracy of the trained classifiers during the N iterations in
the algorithm 2 is q, then we have:

P(k|y = −1) = Ck
N (1− q)kqN−k (1)

P(k|y = +1) = Ck
Nq

k(1− q)N−k (2)

For a sample classified as a positive sample k times during
the N iterations, the probability that its initial label is correct

Algorithm 2 Confidence estimation for the initial labeling
1: Input: the initial training samples S = {si} for the target

category C, and initial training samples {Qi} for other
categories

2: Initialize: ks = 0 for all s ∈ S
3: for i = 1, 2, ..., N do
4: Randomly split S = Strain ∪ Stest with 50%/50%
5: Train a binary random forest classifier R with positive

samples from Strain and negative samples of the same
number that are randomly sampled from {Qi}

6: for s ∈ Stest do
7: if s is classified as a positive sample by R then
8: ks = ks + 1
9: end if

10: end for
11: Exchange Strain and Stest, repeat step 5 -10
12: end for
13: For all s ∈ S, set k = ks and compute the confidence in

its initial label with equation (4)

is:

P(y = +1|k) =
P(y = +1, k)∑
y∈{−1,+1}P(y, k)

(3)

=
qk(1− q)N−k

qk(1− q)N−k + P(y=−1)
P(y=+1) (1− q)kqN−k

As P(y)is unknown, we make an assumption that the ratio
of mislabeled training samples is under 50%, so that we can
properly approximate (3). This assumption gives P(y = −1) ≤
P(y = +1), so we have P(y = +1|k) ≥ f(q, k,N), where

f(q, k,N) =
qk(1− q)N−k

qk(1− q)N−k + (1− q)kqN−k
(4)

With this assumption which is verified in the following ex-
periment, we can approximate P(y = +1|k)with (4) in the
algorithm 2 (N = 10, q = 0.6 in our implementation),
and safely assume that the trained classifier in each iteration
of the algorithm 2 is better than random guess. For the
training/testing procedure (step 5 and 7) in the algorithm 2,
the following features are used:

a) Features for confidence estimation in the scanned
point cloud: For each initialized object, we extract three bag-
of-word features built with the normal, height, and depth of
points in the object respectively, with the same way that the
bag-of-word features were built in [23].

b) Features for confidence estimation in images: For
each initialized pixel with projection of 3D points in images,
we extract patch level appearance features: Texton and SIFT,
and combine them with the normal, height, and depth of the
corresponding 3D point that projects to the position. For the
samples of the category sky without projection of 3D points,
we add default normal, height, and depth.

2) Object graph for the filtering of mislabeled training
samples: In this section, we introduce the object graph which
integrates multiple cues for the filtering of mislabeled training
samples. For each initialized training sample in the point
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cloud, a recognized 3D object O obtained by Algorithm 1,
we define a graph G = 〈V + T , EV + ET 〉 that we call object
graph, as shown in Figure 4. The global node T denotes
the object O. The nodes in V denote the initialized training
samples in the images, pixels with projections of 3D points in
O. As the 3D objects extracted by Algorithm 1 are connected
components, the links between the points in O are transfered
to the graph G. We denote these links with EV , and the links
between nodes in V and nodes in T with ET . Then, the energy
function associated with G is defined as:

E(x, y) = φT (y) +
∑

(i,j)∈ET

φij(xi, y) +
∑
i∈V

ϕi(xi)

+
∑

(i,j)∈EV

ϕij(xi, xj) (5)

The random variable xi ∈ x and y associated with each
node take values from the label set L = {lgood, lbad} that
distinguish the correctly labeled training samples and the
mislabeled training samples. The data terms ϕi(xi) and φT (y)
that encode the estimated confidence in the initial labeling are
defined as:

φT (y) =

{
|V|(1− PT ) y = lgood;
|V|PT y = lbad.

(6)

ϕi(xi) =

{
1− Pi xi = lgood;
Pi xi = lbad.

(7)

PT and Pi are the estimated confidence in the initial
labeling for different nodes. |V| are the number of points in
the 3D object. To encourage spatial smoothness, the smooth
term ϕij(xi, xj) takes the following form:

ϕij(xi, xj) =

{
0 if xi = xj ;
λ otherwise. (8)

To encode label consistency between the images and
scanned point cloud, the term φij(xi, y) takes the following
form:

φij(xi, y) =


∞ if y = lbad,xi 6= y;
1−2PT

0.1|V| if y = lgood,xi 6= y;

0 if y = lgood,xi = y

(9)

This term (9) forces that each node in the images can be
considered as correctly labeled, only when the global node in
the point cloud is correctly labeled. It also allows no more than
10% of the nodes in images can take the label lbad when of
the 3D object takes the label lgood, in order to tolerate certain
degree of registration error between the scanned point cloud
and images.

For the initialized training samples of the category sky in
each image, we define a similar graph as the object graph,
without the global node. For each node that denotes one pixel
in an image, it is linked to its K(K = 5) nearest neighbors.
The corresponding energy function takes the form of (5),
excluding terms involving the global node. Some results of the
filtering of mislabeled training samples are shown in Figure 5.
To the end, we solve the optimization problem (5) by the α-
expansion algorithm [24].

Fig. 4. Object graph: the global node T denotes the 3D object, and nodes in
V denote pixels in the images with projections of 3D points in the 3D object.
Links between the nodes are denoted by lines of different colors.

IV. JOINT SEGMENTATION OF IMAGES AND SCANNED
POINT CLOUD

The final segmentation of scan data and images will be
obtained by the CRF-based joint segmentation module. Details
are introduced in the following.

A. Object extraction in scanned point cloud

As the first step of the joint segmentation, objects of
different categories are extracted by Algorithm 1, using new
object models for different categories. The original object
models in Algorithm 1 are replaced by the new object models,
multiple binary random forest classifiers. These classifiers
determines whether a 3D object belongs to a specific category,
and are trained with the automatically obtained training data.
Specifically, we replace the object model fitting test (line 7 and
15) in Algorithm 1 with the following test: if the estimated
probability of a 3D object belonging to the category is large
than 0.5, we consider it passing the test.

B. Associative Hierarchical CRF for joint optimization

With the extracted objects in the scanned point cloud, we
use the associative Hierarchical CRF [25] to formulate the joint
segmentation problem of images and scanned point cloud. We
define a hierarchical graph G′ = 〈V ′ + T ′, EV′ + ET ′ + EN ′〉.
The global node set T ′ denotes the extracted objects in the
point cloud, and the nodes in V ′ denote the pixels in images.
For each extracted object, we build an object graph defined in
section III-C2, as a part of G′. For each pixel in images, we add
the four neighborhood links, denoted by EN ′ . EV′ denotes the
links between nodes in V ′ associated with the object graphs,
and ET ′ denotes the links between nodes in V ′ and T ′. The
energy function associated with G′ is defined as:

E′(X,Y) =
∑
i∈T ′

φ′i(yi) + α
∑

(i,j)∈ET ′

φ′ij(yi, xj) +

β
∑
i∈V′

ϕ′i(xi) + γ
∑

(i,j)∈EV′+EN′

ϕ′ij(xi, xj) (10)

This energy function integrates the image appearance infor-
mation, geometry information and object level information
obtained from the scanned point cloud together. Different cost
terms are explained in the following:
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Fig. 5. Examples of the initialized labeling and cleaned labeling obtained by the proposed filtering of mislabeled training samples. column 1 and 4: the
original images; column 2 and 5: the corresponding initialized labeling; column 3 and 6: the cleaned labeling.

1) Energy cost for 2D images: The random variable xi ∈ x
associated with one node in V ′ takes a value from the label
set L = {building, car, tree, ground, sky}. The data term
ϕ′i(xi) is a unary potential term to encode the probability of a
node taking a certain label estimated by the two random forest
classifiers R2D and R2D3D, similar to the TextonBoost frame-
work [20]. R2D is trained with patch level appearance features:
Texton and SIFT, applied to the pixels without projections of
3D points. R2D3D is trained with the patch level appearance
features for R2D combined with the normal, height, and depth
of the 3D points that project to the corresponding pixels,
applied to the pixels with projections of 3D points. As the
projections of 3D points are strong indicators of non-sky
region, the nodes in V ′ with projections of 3D points will never
take the label sky. The smooth term ϕ′ij(xi, xj) is similar in
form to the smooth term (8).

2) Energy cost for 3D objects: Random variables yi ∈ Y
associated with nodes in T ′ take a value from the label set
L = {lgood, lbad} that denotes whether the initial label of the
extracted object is correct or wrong. For an object with initial
label Li, the data term φ′i(yi) takes the following form:

φ′i(yi) =

{
|c|(1− Pyi) yi = lgood
|c|Pyi

yi = lbad
(11)

Here, the estimated confidence Pyi is obtained by testing with
the trained binary Random Forest classifiers for the category
Li, the updated object model for the category Li. |c| is the
number of points contained in the object. The smooth term
φ′ij(yi, xj) are used to encode label consistency between the
3D point cloud and 2D images, which are defined as:

φ′ij(yi, xj) =

{
(1− 2Pyi

)/0.1|c| yi = lgood,xi 6= Li

0 yi = lbad or xi = Li

(12)
The weights α, β, γ in (10) can be estimated by the cross
validation on a hold-out set, and we solve the optimization
problem (10) with the α-expansion algorithm [24].

V. EXPERIMENTS

We evaluate the proposed method on the Google Street View
data of two cites: San Francisco (SF) and Rome, captured by
the R5 system of Google [11]. The images are captured by a
ring of interline-transfer, CCD sensors with wide-angle lenses.

Three laser scanners is also included in the R5 system, thereby
enabling the capture of sparse 3D data alongside the imagery.
As a part of the street view processing pipeline, image pixels
have been corresponded to 3D rays in the presence of a rolling
shutter. More details about the data used in our experiment are
described in Table II. To handle the huge data of such a large
scale, we split the entire dataset into about fifty segments, and
each segment is processed independently. To build the object
models described in Section III-A, we roughly estimate them
with five manually labeled objects of each category, which is
the only annotation needed in our method. In terms of the
ground truth data for quantitative evaluation, we uniformly
sampled one thousand images from the input dataset and
labeled them into five categories: ground, building, car, tree,
sky, as well as points in the scanned point cloud associated
with their projections in these selected images.

As the focus of this paper is the parsing of street scenes with
automatically generated training data, our evaluation consists
of two parts: 1) evaluation of the automatically generated train-
ing data; 2) evaluation of the parsing performance achieved
with the automatically generated training data. For the training
data generated by the proposed algorithm in Section III, we
refer to the training data generated by the labeling initialization
as the initialized training data, and the training data obtained
by performing the filtering of mislabeled training samples on
the initialized training data as the cleaned training data in the
following description. The processing time spent on different
components of our method is given in Table II, based an
unoptimized C++ implementation running on a pc (i7 2.8G,
16G RAM).

A. Evaluation of the automatically generated training data

Similar to the evaluation on the ground truth annotation
obtained by manual labeling in [26], we measure the quality
of the automatically generated training data in two aspects:
the amount of the training data and the degree of noise in
the training data which reflects the accuracy of the automatic
generation of training data.

For the first aspect, the proportion of the generated training
data (the proportion of pixels with labels among all pixels in
all images and points with labels in the entire scanned point
cloud) in the input dataset is shown in Figure 6, with the
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Fig. 6. The proportion of the generated training data in the input dataset. The
initialized training data consists of two parts: the cleaned training data and
the removed training data by the filtering of mislabeled training samples.

Dataset #Points #Images LI FT TR TE
Rome 42,111 k 192,861 5h 63h 38h 42h

SF 19,423 k 19,107 1h 7h 4h 4h

TABLE II
The description of the dataset. #Points: the number of 3D points; #Images:

the number of images; LI: total time of labeling initialization; FT: total time
of filtering the mislabeled training samples; TR: total time of training the

CRF model with the automatically generated training data; TE: total time of
testing all the images in the dataset. The size of all the images in the dataset

is 387× 518.

label associated with each pixel diffused within superpixels as
described in Section IV. From Figure 6 which illustrates the
composition of the input dataset, we note that about 18% of
pixels in all images are annotated, with 9% of pixels removed
in the filtering of mislabeled training samples. By contrast,
about 56% of points in the scanned point cloud are annotated,
with 6% of points removed in the filtering of mislabeled
training samples.

For the second aspect, the purity of the initialized training
data and the cleaned training data evaluated on the ground
truth dataset is shown in Figure 7, which counts the ratio
of the correctly labeled training samples in the training data.
From the comparison in Figure 7, we find that the purities
of all categories in the initialized training data are larger than
1/2, which verifies the assumption that the ratio of mislabeled
training samples is under 1/2 made in Section III-C1. We also
find that the purities of most categories in the cleaned training
data are improved by the proposed filtering of mislabeled
training samples, especially the categories tree and car. Several
images with the automatically generated annotation for them
are shown in Figure 8.

B. Evaluation of the parsing performance

In this section, we evaluate the parsing performance
achieved by our method. For the evaluation of segmentation
performance, we use the CAA (category average accuracy, the
average proportion of pixels/points correctly labeled in each
category) and the GA (global accuracy, total proportion of
pixels/points correctly labeled), as previous work [27], [13].

Fig. 7. The purity of the initialized training data and the cleaned training
data in images and scanned point clouds.

The segmentation performance achieved by our method on
the images and scanned point cloud is shown in table III, using
the cleaned training data for the training process. To evaluate
the influence of the joint segmentation of images and scanned
point cloud together, we first test both the joint segmentation
and non-joint segmentation, under the formulation (10). Here,
the non-joint segmentation refers to treating the segmentation
of images and scanned point cloud separately. For the non-joint
segmentation of images, we remove all cost terms involving
scanned point cloud, treating it as a still image segmentation
like [4], [28]. For the non-joint segmentation of scanned point
cloud, we remove all cost terms involving images, treating it as
a pure scanned point cloud segmentation problem like [6]. The
global accuracy, category average accuracy and segmentation
accuracy of different categories achieved by the joint segmen-
tation and non-joint segmentation are compared in Table III.
As expected, we can find the joint segmentation achieves better
global accuracy and category average accuracy. However, we
also note that not all categories benefit from the joint 2D-3D
framework. On one hand, for man-made objects (all classes
except trees), they bear strong regularity in the scanned point
cloud, therefore, they can well segmented with 3D geometry
information merely. The joint segmentation of point-clouds
and images did not provide much improvement on these man-
made categories. On the other hand, the registration errors
between the 2D images and 3D point cloud also lead to
the degradation of the segmentation performance on some
categories. Some segmentation results obtained by the joint
segmentation are shown in Figure 9. More results are provided
in the supplementary video associated with the manuscript.

To further evaluate the quality of the automatically gen-
erated training data, we randomly split the manually labeled
ground truth dataset in our experiments into two parts with
ratio 30%/70%, one part used as training data, and another part
for performance evaluation. We repeated the random split five
times, and averaged the achieved global accuracy and category
average accuracy for each random split. the achieved segmen-
tation accuracy with the automatically generated training data
and manually labeled training data is compared in Table IV.
The average global accuracy and category average accuracy
achieved on the images are 84.3% and 82.2%, slightly better
than the accuracy achieved with the automatically generated
training data. The average global accuracy and category aver-
age accuracy achieved on the scanned point cloud are 89.1%
and 80.5%, slightly worse than the accuracy achieved with
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Data set Image segmentation Point clouds segmentation
Joint Non-joint Joint Non-joint

Building 0.879 0.887 0.843 0.845
ground 0.843 0.861 0.991 0.986

sky 0.887 0.912 - -
tree 0.819 0.754 0.654 0.540
car 0.670 0.421 0.843 0.837

TABLE III
The segmentation accuracy of different categories, achieved by the joint
segmentation and non-joint segmentation respectively. With the cleaned

training data, the global accuracy and category average accuracy achieved
on the images are 83.9%/82% (joint segmentation) and 81.8%/76.7%
(non-joint segmentation). The global accuracy and category average

accuracy achieved on the scanned point cloud are 91.1%/83.3% (joint
segmentation) and 90.4%/80.2% (non-joint segmentation).

Training data Image segmentation Point clouds segmentation
GA CAA GA CAA

automatically generated 0.839 0.82 0.911 0.832
manually labeled 0.843 0.822 0.891 0.805

TABLE IV
The segmentation accuracy achieved with the automatically generated

training data and manually labeled training data.

the automatically generated training data. In general, in this
comparison, the segmentation performance achieved by using
the automatically generated training data is comparable to that
achieved by using the manually labeled training data.

Last, we compare our method with previous works [25],
[13], [6], [29]. For the competitors, we use the same train-
ing/testing setting as the comparison given in Table IV. [25],
[13] are trained with annotated images and applied to image
segmentation, with the same parameters as that in [25], [13].
[6], [29] are trained with annotated point cloud and applied
to point cloud segmentation), with the parameters of [6] well
tuned on the dataset used in our experiment. The comparison
result is given in Table V. From the comparison, we can find
our method outperforms the competitors to varying degrees,
which shows the advantage of the joint segmentation.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose a novel method for the parsing of
images and scanned point cloud captured in large-scale street
scenes, which can automatically generate training data from

Fig. 8. Examples of the parsing results obtained by our method. The first
row shows the input images, and the second row shows the parsing results.
The third row shows the automatically generated annotation for these images
by our method.

Data set Image segmentation Point clouds segmentation
GA CAA GA CAA

our method 0.839 0.82 0.911 0.832
[25] 0.821 0.809 - -
[13] 0.8 0.792 - -
[6] - - 0.89 0.75

[29] - - 0.91 0.787

TABLE V
The segmentation accuracy achieved by our method and previous

methods [25], [13], [6], [29].

the given input data with weak priors. First, utilizing the weak
priors about the most five common categories in the street
environment, the initialized training data is generated. Then,
a filtering algorithm is proposed to remove those mislabeled
training samples in the initialized training data. Finally, with
the generated training data, a CRF-based parsing module is
proposed for the parsing of large scale street scenes, which
uses both the image appearance information and geometry
information.

With scanned point cloud of low resolution, like the Google
Street View data we used in our experiment, it is difficult
to extract small objects as the points on them are quite few,
which hinders the automatic generation of training data for
these categories. Therefore, currently, the targeted categories
in the proposed method are constrained to the major categories
in the street view. Given scanned point cloud captured by laser
sensors with higher resolution, it is reasonable to expect that
the proposed method can be generalized to more categories.
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