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In this supplemental material, we provide additional tech-
nical details, extra analysis experiments to the main paper.

Network Architecture

We choose VGG16 (Matthew and Rob 2014) as our CNN
backbone. For the 2D detector, we mainly follow KittiBox
(Teichmann et al. 2016). The 6 output channels consist of
the objectiveness confidence (2 channels), the offsets of 2D
bounding box center to the grid center (2 channels) and the
size of the bounding box (2 channels). In the refinement
stage, RoiAlign is applied to the region of interest in early
feature maps to regress the delta values.

The sub-network for the instance-level depth estimation,
3D localization and corner offsets regression shares the same
buffer zone following the backbone network. Notice that
there are two buffer zones, with one extending from conv4_3
and another from pool5. Layers with 64 output channels are
designed as bottlenecks to enforce the network to encode
minimal sufficient information and prevent over-fitting, and
also reduce the computational cost. Inverted residual con-
nections (Sandler et al. 2018) are applied to neighboring
bottlenecks to provide shortcuts for gradient propagation.

The branch (i.e., depth encoder) for instance-level depth
estimation follows the architecture introduced in DORN (Fu
et al. 2018) that stacks along the channel axis the outputs of
a fully-connected global information encoder and 3 parallel
dilated convolution layers (Yu and Koltun 2015) with dif-
ferent dilated rates, which for the early features are 6, 12,
24 and 2, 4, 8 for deep features. The branches for location
estimation and corner regression both contain 4 convolution
layers with 3 x 3 kernels and 1x 1 stride. While there are 96
weighted layers in total, the deepest path i.e., from the input
to IDE output, only contains 26 weighted layers, since the
3D reasoning branches are parallel. Detailed network con-
figuration is shown in Table A

Results Visualization
In Fig. A, we compare our 3D detection results with 3DOP
(Chen et al. 2015) and Mono3D (Chen et al. 2016) by visu-
alizing in the 3D space and on the image. We also present
the instance-level depth estimation outputs in Fig. B.
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Layer Description ‘

Output Tensor Dim.

Input image \ 384 x 1248 x 3
Backbone
13 VGG 16, conv 4 48 x 156 x 512
18 VGG 16, pool 5 12 x 39 x 512
2D Detector
19-20 1 x 1conv 12 x 39 x 128
21-22 1 x 1 conv, softmax 12 x 39 x 2
23 from 20, 1 x 1 conv, bbox offsets 12 x 39 x 4
24 from 13,7 x 7 RoiAlign 12 X 39 x 7 x7x512
25 1 x 1 conv, reduce channels 12 X 39X 7x7x32
26 fully connected, offset deltas 12 x 39 x4
27 add layer 26 and 23, refined offsets 12x39 x4
Buffer Zone
28 from 18, 3 x 3 conv 12 x 39 x 64
29 3 x 3 conv 12 x 39 x 256
30 3 X 3 conv, add with layer 28 12 x 39 x 64
31-34 (repeat layers 29 and 30) x 2 12 x 39 x 64
35 3 X 3 conv 12 x 39 x 128
36 from 13, 3 x 3 conv 48 x 156 x 64
37-43 repeat layers 29-35, 4 X resolution 48 x 156 x 256
Instance-level Depth Estimation
44 3 x 3 conv 48 x 156 x 64
45 3 x 3 conv 48 x 156 x 256
46 3 X 3 conv, add with 44 48 x 156 x 64
47-48 repeat layer 45 and 46 48 x 156 x 64
49 3 x 3 conv 48 x 156 x 128
50 3 X 3 conv, stride 2 24 X 78 X 64
51 2 X 2 max pooling, stride 2 12 x 39 x 64
52 fully connected 64
53 copy to every pixel 48 x 156 x 64
54 from 49, 3 x 3 conv, 6 X atrous 48 x 156 x 64
55 from 49, 3 x 3 conv, 12 X atrous 48 x 156 x 64
56 from 49, 3 x 3 conv, 24 X atrous 48 x 156 x 64
57 stack 53, 54, 55 and 56 along channels 48 x 156 X 256
58 1 x 1 conv 48 x 156 x 128
59 from 35,3 x 3 conv 12 x 39 x 64
60-75 repeat layers 45-58, 1 /4 resolution 12 x 39 x 128
76 1 x 1 conv, coarse instance depth 12x39x 1
77 from 58, 7 x 7 RoiAlign 12X 39X 7 x7x128
78 fully connected, delta instance depth 12 x39x1
79 add 76 and 78, refined instance depth 12 x 39 x1
3D Center Localization
80 from 43, 3 x 3 conv 48 x 156 x 64
81-85 repeat layers 45-49 48 x 156 x 128
86 from 35, 3 x 3 conv 12 x 39 x 64
87-91 repeat layers 45-49, 1/4 resolution 12 x 39 x 128
92 1 X 1 conv, projected 3D center 12 X 39 x 2
93 extension, outputs 3D location 12x39%x3
94 from 85, 7 x 7 RoiAlign 12 x 39X 7 x7x128
95 fully connected, delta 3D location 12x 39 x 3
96 add layer 93 and 95, refined location 12 x39x 3
Corner Offsets Regression
97 from 43, 3 X 3 conv 48 x 156 x 64
98-102 repeat layers 45-49 48 x 156 x 128
103 7 x 7 RoiAlign 12X 39 x7x7x128
104 fully connected, 3 X 8 offsets 12 x 39 x 24

Table A: Network configuration.
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Figure A: Qualitative comparison. Blue boxes indicate ground truths and orange ones are predictions. It can be seen from (a)
that our method is the most stable when dealing with far objects. In corner-cases when the object is truncated by the image
boundaries, i.e., in (d), our method can still localize the whole ABBox-3D.
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Figure B: Instance-level depth. Each grid cell predicts the 3D centric depth of its nearest instance. Cells with objectiveness
confidence (provided by the 2D detector) no less than 0.1 are kept for visualization
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