
Structure-driven Facade Parsing With Irregular Patterns

Jinglu Wang∗ Chun Liu† Tianwei Shen∗ Long Quan∗

The Hong Kong University of Science and Technology∗ NavInfo Co., Ltd†

{jwangae,tshenaa,quan}@cse.ust.hk∗ liuchun@navinfo.com†

Abstract

We propose a novel method for recognizing irregular
patterns in facades. An irregular pattern is an incomplete
2D grid, representing the placements of repetitive structural
architectural objects (e.g., windows), which is capable of
being generalized to a variety of facade structures. To ef-
fectively recognize such a pattern, we jointly model objects
and object structures in a unified Marked Point Process
framework, where the architectural objects are abstracted
as sparsely populated geometric entities and the pairwise
spatially interactions are modeled as elliptical repulsion
fields. To optimize the proposed model, we introduce a
structure-driven Monte Carlo Markov Chain (MCMC) sam-
pler, by which the irregular pattern hypotheses are itera-
tively constructed in a bottom-up manner and verified in a
top-down manner. The solution space is explored more ef-
ficiently for fast convergence. Extensive experiments have
shown the efficiency and accuracy of our method of parsing
a large category of facades.

1. Introduction
3D urban reconstruction [12, 11, 21] has attracted much

attention since the launch of many popular on-line 3D geo-
graphic services. With the rapid growth of aerial radiome-
try, many astonishing 3D maps are available to the public,
but fail to capture enough details at the ground level. There-
fore, facade analysis, which can drive 3D reconstructions at
the ground level in rich details, is in great need.

Generally, semantic facade analysis is a process to de-
compose facades into semantic architectural objects in geo-
metric forms. Although numerous methods have been pro-
posed, it is still challenging due to three major limitations.
(1) There is a lack of generality in facade structure repre-
sentation. In the current literature, facades are mostly rep-
resented by a single pattern in strict alignments [16, 10, 17]
or a specific architectural style [14], which can not adapt
to various real facades. (2) The object-level facade mod-
eling is missing so that the analysis is not stable under
heavy pixel-wise noise and occlusion. (3) It is time con-
suming when involving grammar splitting methods which

Figure 1. Workflow: (a) input image; (b) object (window) proba-
bility map; (c) 2D incomplete grid facade structure representation.
(d) regulation result using multi-lattice structure.

have huge solution space.

To address the aforementioned limitations, we propose a
novel method to recognize irregular object patterns, which
are generally modeled in an incomplete and non-aligned
grid, in facades. The overview of our method is illustrated
in Fig. 1. By any supervised learning techniques, we first
produce a object probability map (Fig. 1b). Then we model
facade objects and object structures jointly in a Marked
Point Process [1, 7] framework. Since facade objects are
sparsely populated, we define the pairwise spatially interac-
tions between objects as elliptical repulsion fields to model
object spacing flexibly. By such definition, our joint ob-
ject and structure model contains arbitrary numbers of ob-
jects, arbitrary numbers of repetitions (Fig. 1c), and cus-
tomized interaction functions. To optimize such a complex
model, we design a structure-driven MCMC sampler which
encodes the global grid layout in a top-down manner to ex-
plore the solution space efficiently. In addition, any further
regulation can be performed based on our detected objects,
such as the low rank constraint [6] or grammars [10]. An
example of regulated objects clustered in multiple groups
are shown in Fig. 1d.

In summary, our contributions are: 1) a general facade
structure representation that allows facade objects to sit on
incomplete grids and to be of different sizes, 2) a Marked
Point Process that models sparsely populated objects, and
3) an optimization of a structure-driven MCMC sampler in
a bottom-up/top-down inference manner.
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1.1. Related Work

With different modeling assumptions, researchers took
two major categories of approaches on facade parsing:
bottom-up and top-down approaches.

Bottom-up approaches exploit low-level features to de-
tect facade elements. The facade structures are then inferred
by clustering these elements. R. Tyleček et al. [13] modeled
windows based on edges and considered the facade struc-
ture as rigid or weakly aligned grids. Another strategy is
to parse the facades based on the discovery of symmetries
in facade images. Zhao et al. [24] used the transform space
voting to extract the lattice structures. Similar works can
be found in [22, 23, 18] for discovering near-regular struc-
tures. In general, these bottom-up approaches rely heavily
on local features and are sensitive to occlusion and noise.

Top-down approaches encode facade decomposition
knowledge as priors and use them to regularize facade inter-
pretation. A common practice is to use parametric grammar
rules. Thus the facade parsing task is to discover both the
parametrized grammar rules and the parameters to yield a
pre-defined facade layout. Recently, Teboul et al. [16] de-
veloped a system based on 2D split grammar and obtained
excellent results on Haussmannian buildings. The extension
of this work to asymmetric splits and 3D data were pre-
sented in [14, 15, 9]. al. [3] retrieve a parsing that respects
common architectural constraints. Besides, Zhu et al. [19]
proposed a top-down/bottom-up inference algorithm with a
generative attribute grammar to describe man-made scenes.
2. An Object-level Model for Facade Parsing

Because the facade objects, i.e., windows, are sparsely
and structurally populated, we jointly model the objects
and structures in the Marked Point Process [7]. The
objects are modeled as a rectangle configuration X =
[x1, · · · , xi, · · · , xn]. The position for each rectangle xi
is sampled over the probability map, and the width wi and
height hi are uniformly sampled from a predefined range.
The energy function used for penalizing improper configu-
rations is an association of two terms.

U(X) = Uprior(X) + αUdata(X), α∈(0, 1) (1)

where Uprior denotes the prior term encodes local interac-
tions which correspond to the spacing between windows
and the global layout which concerns with window align-
ment and repetition patterns, Udata the data term measuring
the coherence of the sampled rectangles with respect to the
probability map, α the weighting coefficient.

By minimizing the energy function, the optimal set of
rectangles is obtained, e.g., green rectangles in Fig. 1c.
2.1. Prior Term

We construct the prior term Uprior(X) = Ulocal(X) +
Uglobal(X) for a configuration of rectangles X based on a
local term Ulocal(X) and a global term Uglobal(X).

(a) (b)
Figure 2. Rectangle Interaction. (a) The neighborhood of R0 is
marked with an ellipse and the color indicates the penalty accord-
ing to the configuration. RN does not interact with R0. R1 over-
laps with R0. Other rectangles are too close to R0. (b) Four types
of rectangle configuration: (i) overlapping; (ii) horizontally too
close; (iii) vertically too close; (iv) favored configuration.

Local Interaction. The interacting rectangle xj is chosen
to be the closest neighbor of current rectangle xi. Partic-
ularly, we propose a repulsion term UR between pairwise
neighboring rectangles to avoid dense arrangement (Fig. 2).
Thus the local interaction term Ulocal is the sum of re-
pulsion terms UR among all pairwise interactions in the
current configuration X , i. e., Ulocal =

∑
i,j UR(xi, xj).

For each rectangle xi, we establish an elliptical repul-
sion region (Fig. 2a) using a horizontal repulsion distance
δx and a vertical one δy . If the neighboring rectangle xj
invades into this region (tx < δx and ty < δy , where tx and
ty are the horizontal distance and the vertical distance of the
closest point to the ellipse center), it will be penalized with a
cost UR(xi, xj) based on the distance between the invading

rectangle and the ellipse center UR(xi, xj) = 1.0− t2x
δ2x
− t2y
δ2y

,
Otherwise, the cost is 0.
Global Layout. The global layout is not directly tractable
from data. Instead, we apply the global layout constraint
during the structure-driven optimization in a bottom-up/top-
down inference manner [5]. In each optimization iteration,
we construct a global layout hypothesis from the already
detected object and verify the structure by object detection
on this structure. In this way, the global layout constraint is
implicitly encoded.

2.2. Data Term

The data term combines a set of quality functions, rect-
angle rate R, contrast rate C, homogeneity rate H and area
rate A, in order to ensure that good rectangle candidates are
always well positioned (locations) and scaled (width and
height) with respect to the probability map (Fig. 3). For
each rectangle xi, the data term is defined as:

Ud(xi) = max[R(xi), C(xi)] ∗H(xi) ∗A(xi) (2)

The total data term is the sum of all individual data terms,
namely, Udata(X) =

∑
i Ud(xi), xi ∈ X.



Figure 3. Data term considerations over an object probability map.
Two rectangle proposals R2 (favored) and R1 (undesired) are
shown in four configurations corresponding to different consid-
erations: (a) R2 should have a large integral over the probability
map (rectangle rate); (b) R2 should be more differentiable from
neighborhood by contrast comparing to R1 (contrast rate); (c) R2

should have a higher homogeneity to be well positioned over the
probability map (homogeneity rate); (d) R2 should have a large
support (area rate).

Rectangle Rate. Rectangle rate R is used to quantify the
confidence of a rectangular object candidate over the proba-
bility map. We first define the rectangle ratio r∈[0, 1] as the
intensity of per unit area. Following previous work [6], the
quality function maps r to the rectangle rate R ∈ [−1, 1],
taking the form

R(xi) =

{
1− θ×(ri/T )2 if ri < T,
−(ri/T )2 if ri ≥ T (3)

where T is a threshold, θ a weighting coefficient.
Contrast Rate. A good rectangle candidate should have
strong contrast to its neighbors over the probability map.
To measure the contrast ratio, we take Bhattacharya dis-
tance in considering the two Gaussian mixture distributions
of the probabilities over the rectangle region A inside the
rectangle and the surrounding region B outside the rectan-
gle in a small neighborhood. The threshold d0 is used to
calibrate the contrast ratio [20] (Equation 4, µ and σ are
mean and standard deviation respectively) onto contrast rate
C ∈ (−1, 1] (Equation 5).

dB(A,B) =
(µA − µB)2

2×
√
σ2
A + σ2

B

− log( σAσB
σ2
A + σ2

B

) (4)

C(xi) =

{
1− d

d0
if d < d0,

exp(−(d−d0)d0
− 1) otherwise

(5)

Homogeneity Rate. The homogeneity rate H is a measure
to ensure that the probabilities inside the rectangle are con-
sistent. It is defined by counting the number of intensities
with a small deviation to the mean intensity over the proba-
bility map, H(xi) = 1xi∈N , N = {p|v(p)∈Bσ(µ)}, where
p is a pixel inside the rectangle xi over the probability map,
v(p) the intensity value, µ the mean probability inside the
rectangle, and σ the threshold parameter.

Area Rate. We define the area rate A to be the ratio be-
tween area size of the current rectangle to the maximum
allowed rectangle size. It is used to encourage rectangle as
large as possible. For a rectangle xi with its width w ∈
[Wmin,Wmax] and its height h ∈ [Hmin, Hmax], the area
rate is A(xi) = w ∗ h/(Wmax ∗Hmax).

3. Structure-driven Optimization
The optimization of the energy function proposed in

Equation 1 is not simple because of large variations of sizes,
arbitrary number of objects, arbitrary numbers of align-
ments and arbitrary number of repetitive patterns. Hence the
searching space is extremely large. Moreover, this energy
function is not guaranteed to be convex with customized
object interactions. Thus, we consider a MCMC [4] sam-
pler to optimize the model. Particularly, we adopt the
multiple-birth-and-death (MBD) algorithm [20] and pro-
pose a structure-driven MCMC sampler to optimize the en-
ergy defined in Equation 1.

3.1. Structure-driven MCMC sampler

It has been shown that the birth rate in the MBD algo-
rithm can be non-homogeneous and does not have impact
on the convergence to the global minimum but only the con-
vergence speed inn the work [20]. Besides the normal MBD
move, we propose three additional moves based on MBD to
speed up the algorithm. The convergence is still guaranteed
because only the birth mechanism is changed. The conver-
gence analysis is shown is the appendix.

By randomly switching among the three moves, the
structure hypotheses are dynamically updated for more ef-
ficient solution space searching. We consider that such
structure-driven birth mechanism is equivalent to a dynamic
birth map.
Multiple-birth-and-death (MBD). In this move, we sam-
ple object positions from the probability map since it di-
rectly corresponds to the data confidence. The object sizes
are uniformly sampled from a pre-defined range.
Lattice-driven MBD. We propose lattice structures for
each object candidate in the current iteration in terms of
four neighbors including top, bottom, left and right (Fig. 4
top row). The horizontal and vertical displacements are uni-
formly selected from horizontal and vertical generator lists
which are obtained from the object distances. The sizes are
the same as the seed object. This move ensures that missing
objects can be recovered in a small neighborhood.
Grid-driven MBD. We also propose multiple objects in
grid structures (Fig. 4 bottom row). We extract all X and
Y coordinates from current object list and construct a grid
structure by all coordinate enumerations. Then we add ob-
jects centering on the grid with uniformly sampled sizes.
This move ensures that missing objects can be recovered in
the grid structures.



(a) (b) (c) (d)
Figure 4. Lattice-driven MBD (top row) and grid-driven MBD
(bottom row): (column a) rectangles (green) obtained from pre-
vious iteration; (b) proposing rectangles (blue) in lattice (top) /
grid (bottom) structures; (c) object rectangles (red) removing by
death; (d) rectangles (green) obtained in the current iteration.

Regulation. After the MCMC algorithm converges, we get
the irregular patterns (Fig. 1c). To regulate the final results
and discover window structures. We first group the detected
windows as multiple lattices according to their sizes and
alignments, shown as different colors in Fig. 1d. Then, we
use the low rank constraint [6] and the grammar that com-
pletes a full 3-layer facade analysis [10] for the regulation.

4. Experiment
Demonstrative Results. We test our proposed method
on two image sets, the publicly available “ECP” facade
dataset [18, 24, 16] and the “Boulevard” dataset which is
captured by ourselves including several building styles and
with heavy pixel-wise occlusion (102 facade images from
Boulevard Saint Michel in Paris). For these images, the
probability maps are produced by supervised image classi-
fication with random forest [2]. Some demonstrative results
are shown in Fig. 5.

We also use 3D laser scans and multi-view images to
evaluate our method. For multi-view images, we use Qusi-
dense structure from motion [8] to reconstruct 3D points.
To apply our method on 3D data, we first generate 2D depth
maps by triangulating the scanned/reconstructed 3D points.
Then, the depth maps serve as probability maps. The win-
dow detection results are shown in Fig. 6 and Fig. 7.
Qualitative Comparison. The grammar based parsing [14,
16] has been introduced to facade analysis. In comparison,
we can deal with structures represented by both regular and
irregular split grammar methods, shown in Fig. 8.
Quantitative Comparison. The comparison is focused on
window detection. Without any architectural structure as-
sumption, our recognition rate is 80%, comparable to all
state-of-art methods in “ECP” dataset and superior over
them in “Boulevard” dataset. Our computation time is
around 2 minutes, close to 2∼7 minutes from [18]. We have
also applied the low rank constraint [6] and a simple gram-
mar to as architectural level process in order to complete a
full 3-layer facade analysis [10]. The detailed comparison

Figure 5. Results on single images from “ECP” (top) and “Boule-
vard” (bottom) datasets. We can find that our proposed method can
handle sever occlusion problems. Different colors denote different
lattice structures.

Figure 6. Input laser scans (column 1, 3) and window detection on
depth maps (column 2, 4).

Figure 7. Result on multi-view images: (a) Reconstructed 3D
points from multi-view images; (b) depth map; (c) detected win-
dows in fronto-parallel view; (d) image-based building modeling
using detected windows.

Figure 8. Qualitative comparison with grammar-based methods,
“RL” [16] and “IR” [14]. We can find that our method is compa-
rable with grammar-based methods in window detection.

is listed in Table 1.
RL [16] IL [14] TL [10] ours ours+LR ours+Gr

ECP 81 68 75 80 87 85
Boulevard 65 N/A N/A 76 80 78

Table 1. Window detection comparison in pixel average accuracy.
“LR” is short for with low rank constraint. “Gr” is short for using
grammar constraints.



5. Conclusion
We present a novel method for recognizing irregular pat-

terns which are generalized to a variety of facade struc-
tures. We adopt a unified joint object and structure mod-
eling approach based on Marked Point Process framework,
and propose a structure-driven optimizer with additional
kernel moves to perturb object configurations in rectilinear
structures. Extensive experiments and comparisons show
that the proposed method can efficiently and accurately ex-
tract the rectilinear structures.
Limitations. Our method relies on the probability maps.
Thus, if the data is corrupted significantly at object level
(completely occlusion or heavy shadows), we will not be
able to recover the objects, e.g. the top right window in col-
umn four of Fig. 6. Therefore, our method will be slightly
less accurate than those obtained with specialized structure
priors in specific scenes. However, our work can be con-
sidered as an object level processing and can be further in-
tegrated to those specific regulation frameworks to improve
the detection accuracy.
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